![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylbird | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
sylbird.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylbird | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | sylbird.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
4 | 2, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3d 202 drex1 1809 eqreu 2952 onsucsssucr 4541 ordsucunielexmid 4563 ovi3 6055 tfrlem9 6372 dom2lem 6826 distrlem4prl 7644 distrlem4pru 7645 recexprlemm 7684 caucvgprlem1 7739 caucvgprprlemexb 7767 aptisr 7839 map2psrprg 7865 renegcl 8280 addid0 8392 remulext2 8619 mulext1 8631 apmul1 8807 nnge1 9005 0mnnnnn0 9272 nn0lt2 9398 zneo 9418 uzind2 9429 fzind 9432 nn0ind-raph 9434 ledivge1le 9792 elfzmlbp 10198 difelfznle 10201 elfzodifsumelfzo 10268 ssfzo12 10291 flqeqceilz 10389 addmodlteq 10469 uzsinds 10515 qsqeqor 10721 facdiv 10809 facwordi 10811 bcpasc 10837 addcn2 11453 mulcn2 11455 climrecvg1n 11491 odd2np1 12014 oddge22np1 12022 gcdaddm 12121 algcvgblem 12187 cncongr1 12241 pcdvdsb 12458 pcaddlem 12477 infpnlem1 12497 prmunb 12500 imasaddfnlemg 12897 f1ghm0to0 13342 ghmf1 13343 imasring 13560 subrgdvds 13731 aprcotr 13781 quscrng 14029 metss2lem 14665 gausslemma2dlem0i 15173 gausslemma2dlem1a 15174 lgseisenlem2 15187 2sqlem6 15207 |
Copyright terms: Public domain | W3C validator |