![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylbird | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
sylbird.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylbird | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | sylbird.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
4 | 2, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3d 202 drex1 1809 eqreu 2953 onsucsssucr 4542 ordsucunielexmid 4564 ovi3 6057 tfrlem9 6374 dom2lem 6828 distrlem4prl 7646 distrlem4pru 7647 recexprlemm 7686 caucvgprlem1 7741 caucvgprprlemexb 7769 aptisr 7841 map2psrprg 7867 renegcl 8282 addid0 8394 remulext2 8621 mulext1 8633 apmul1 8809 nnge1 9007 0mnnnnn0 9275 nn0lt2 9401 zneo 9421 uzind2 9432 fzind 9435 nn0ind-raph 9437 ledivge1le 9795 elfzmlbp 10201 difelfznle 10204 elfzodifsumelfzo 10271 ssfzo12 10294 flqeqceilz 10392 addmodlteq 10472 uzsinds 10518 qsqeqor 10724 facdiv 10812 facwordi 10814 bcpasc 10840 addcn2 11456 mulcn2 11458 climrecvg1n 11494 odd2np1 12017 oddge22np1 12025 gcdaddm 12124 algcvgblem 12190 cncongr1 12244 pcdvdsb 12461 pcaddlem 12480 infpnlem1 12500 prmunb 12503 imasaddfnlemg 12900 f1ghm0to0 13345 ghmf1 13346 imasring 13563 subrgdvds 13734 aprcotr 13784 quscrng 14032 metss2lem 14676 gausslemma2dlem0i 15214 gausslemma2dlem1a 15215 lgseisenlem2 15228 2sqlem6 15277 |
Copyright terms: Public domain | W3C validator |