Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylbird | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
sylbird.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylbird | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | sylbird.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
4 | 2, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 drex1 1786 eqreu 2917 onsucsssucr 4485 ordsucunielexmid 4507 ovi3 5974 tfrlem9 6283 dom2lem 6734 distrlem4prl 7521 distrlem4pru 7522 recexprlemm 7561 caucvgprlem1 7616 caucvgprprlemexb 7644 aptisr 7716 map2psrprg 7742 renegcl 8155 addid0 8267 remulext2 8494 mulext1 8506 apmul1 8680 nnge1 8876 0mnnnnn0 9142 nn0lt2 9268 zneo 9288 uzind2 9299 fzind 9302 nn0ind-raph 9304 ledivge1le 9658 elfzmlbp 10063 difelfznle 10066 elfzodifsumelfzo 10132 ssfzo12 10155 flqeqceilz 10249 addmodlteq 10329 uzsinds 10373 qsqeqor 10561 facdiv 10647 facwordi 10649 bcpasc 10675 addcn2 11247 mulcn2 11249 climrecvg1n 11285 odd2np1 11806 oddge22np1 11814 gcdaddm 11913 algcvgblem 11977 cncongr1 12031 pcdvdsb 12247 pcaddlem 12266 infpnlem1 12285 prmunb 12288 metss2lem 13097 2sqlem6 13556 |
Copyright terms: Public domain | W3C validator |