| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylbird | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylbird.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| sylbird.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylbird | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | sylbird.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 drex1 1822 eqreu 2966 onsucsssucr 4561 ordsucunielexmid 4583 ovi3 6090 tfrlem9 6412 dom2lem 6870 distrlem4prl 7704 distrlem4pru 7705 recexprlemm 7744 caucvgprlem1 7799 caucvgprprlemexb 7827 aptisr 7899 map2psrprg 7925 renegcl 8340 addid0 8452 remulext2 8680 mulext1 8692 apmul1 8868 nnge1 9066 0mnnnnn0 9334 nn0lt2 9461 zneo 9481 uzind2 9492 fzind 9495 nn0ind-raph 9497 ledivge1le 9855 elfzmlbp 10261 difelfznle 10264 elfzodifsumelfzo 10337 ssfzo12 10360 flqeqceilz 10470 addmodlteq 10550 uzsinds 10596 qsqeqor 10802 facdiv 10890 facwordi 10892 bcpasc 10918 ccatsymb 11066 swrdsbslen 11127 swrdspsleq 11128 swrdlsw 11130 swrdswrdlem 11163 addcn2 11665 mulcn2 11667 climrecvg1n 11703 odd2np1 12228 oddge22np1 12236 bitsfzo 12310 gcdaddm 12349 algcvgblem 12415 cncongr1 12469 pcdvdsb 12687 pcaddlem 12706 infpnlem1 12726 prmunb 12729 imasaddfnlemg 13190 f1ghm0to0 13652 ghmf1 13653 imasring 13870 subrgdvds 14041 aprcotr 14091 quscrng 14339 metss2lem 15013 gausslemma2dlem0i 15578 gausslemma2dlem1a 15579 lgseisenlem2 15592 2sqlem6 15641 incistruhgr 15730 |
| Copyright terms: Public domain | W3C validator |