| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylbird | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylbird.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| sylbird.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylbird | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | biimprd 158 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | sylbird.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 drex1 1812 eqreu 2956 onsucsssucr 4546 ordsucunielexmid 4568 ovi3 6064 tfrlem9 6386 dom2lem 6840 distrlem4prl 7670 distrlem4pru 7671 recexprlemm 7710 caucvgprlem1 7765 caucvgprprlemexb 7793 aptisr 7865 map2psrprg 7891 renegcl 8306 addid0 8418 remulext2 8646 mulext1 8658 apmul1 8834 nnge1 9032 0mnnnnn0 9300 nn0lt2 9426 zneo 9446 uzind2 9457 fzind 9460 nn0ind-raph 9462 ledivge1le 9820 elfzmlbp 10226 difelfznle 10229 elfzodifsumelfzo 10296 ssfzo12 10319 flqeqceilz 10429 addmodlteq 10509 uzsinds 10555 qsqeqor 10761 facdiv 10849 facwordi 10851 bcpasc 10877 addcn2 11494 mulcn2 11496 climrecvg1n 11532 odd2np1 12057 oddge22np1 12065 bitsfzo 12139 gcdaddm 12178 algcvgblem 12244 cncongr1 12298 pcdvdsb 12516 pcaddlem 12535 infpnlem1 12555 prmunb 12558 imasaddfnlemg 13018 f1ghm0to0 13480 ghmf1 13481 imasring 13698 subrgdvds 13869 aprcotr 13919 quscrng 14167 metss2lem 14819 gausslemma2dlem0i 15384 gausslemma2dlem1a 15385 lgseisenlem2 15398 2sqlem6 15447 |
| Copyright terms: Public domain | W3C validator |