| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid2 | GIF version | ||
| Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | abbi2i 2311 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | 2 | eqcomi 2200 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: csbid 3092 abss 3253 ssab 3254 abssi 3259 notab 3434 inrab2 3437 dfrab2 3439 dfrab3 3440 notrab 3441 eusn 3697 dfopg 3807 iunid 3973 csbexga 4162 imai 5026 dffv4g 5558 frec0g 6464 dfixp 6768 euen1b 6871 acfun 7290 ccfunen 7347 |
| Copyright terms: Public domain | W3C validator |