ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2 GIF version

Theorem abid2 2317
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem abid2
StepHypRef Expression
1 biid 171 . . 3 (𝑥𝐴𝑥𝐴)
21abbi2i 2311 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2200 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  csbid  3092  abss  3253  ssab  3254  abssi  3259  notab  3434  inrab2  3437  dfrab2  3439  dfrab3  3440  notrab  3441  eusn  3697  dfopg  3807  iunid  3973  csbexga  4162  imai  5026  dffv4g  5558  frec0g  6464  dfixp  6768  euen1b  6871  acfun  7290  ccfunen  7347
  Copyright terms: Public domain W3C validator