Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid2 | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 170 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | abbi2i 2285 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | 2 | eqcomi 2174 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: csbid 3057 abss 3216 ssab 3217 abssi 3222 notab 3397 inrab2 3400 dfrab2 3402 dfrab3 3403 notrab 3404 eusn 3657 dfopg 3763 iunid 3928 csbexga 4117 imai 4967 dffv4g 5493 frec0g 6376 dfixp 6678 euen1b 6781 acfun 7184 ccfunen 7226 |
Copyright terms: Public domain | W3C validator |