ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2 GIF version

Theorem abid2 2326
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem abid2
StepHypRef Expression
1 biid 171 . . 3 (𝑥𝐴𝑥𝐴)
21abbi2i 2320 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2209 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  {cab 2191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201
This theorem is referenced by:  csbid  3101  abss  3262  ssab  3263  abssi  3268  notab  3443  inrab2  3446  dfrab2  3448  dfrab3  3449  notrab  3450  eusn  3707  dfopg  3817  iunid  3983  csbexga  4172  imai  5038  dffv4g  5573  frec0g  6483  dfixp  6787  euen1b  6895  acfun  7319  ccfunen  7376
  Copyright terms: Public domain W3C validator