ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2 GIF version

Theorem abid2 2327
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem abid2
StepHypRef Expression
1 biid 171 . . 3 (𝑥𝐴𝑥𝐴)
21abbi2i 2321 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2210 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202
This theorem is referenced by:  csbid  3105  abss  3266  ssab  3267  abssi  3272  notab  3447  inrab2  3450  dfrab2  3452  dfrab3  3453  notrab  3454  eusn  3712  dfopg  3826  iunid  3992  csbexga  4183  imai  5052  dffv4g  5591  frec0g  6501  dfixp  6805  euen1b  6913  acfun  7345  ccfunen  7406
  Copyright terms: Public domain W3C validator