| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid2 | GIF version | ||
| Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | abbi2i 2321 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | 2 | eqcomi 2210 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: csbid 3105 abss 3266 ssab 3267 abssi 3272 notab 3447 inrab2 3450 dfrab2 3452 dfrab3 3453 notrab 3454 eusn 3712 dfopg 3826 iunid 3992 csbexga 4183 imai 5052 dffv4g 5591 frec0g 6501 dfixp 6805 euen1b 6913 acfun 7345 ccfunen 7406 |
| Copyright terms: Public domain | W3C validator |