ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2 GIF version

Theorem abid2 2298
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem abid2
StepHypRef Expression
1 biid 171 . . 3 (𝑥𝐴𝑥𝐴)
21abbi2i 2292 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2181 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  {cab 2163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173
This theorem is referenced by:  csbid  3067  abss  3226  ssab  3227  abssi  3232  notab  3407  inrab2  3410  dfrab2  3412  dfrab3  3413  notrab  3414  eusn  3668  dfopg  3778  iunid  3944  csbexga  4133  imai  4986  dffv4g  5514  frec0g  6400  dfixp  6702  euen1b  6805  acfun  7208  ccfunen  7265
  Copyright terms: Public domain W3C validator