| Step | Hyp | Ref
 | Expression | 
| 1 |   | ssid 3203 | 
. 2
⊢ 𝐴 ⊆ 𝐴 | 
| 2 |   | fsum2d.2 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 3 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) | 
| 4 |   | sumeq1 11520 | 
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ ∅ Σ𝑘 ∈ 𝐵 𝐶) | 
| 5 |   | iuneq1 3929 | 
. . . . . . . 8
⊢ (𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ({𝑗} × 𝐵) = ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)) | 
| 6 | 5 | sumeq1d 11531 | 
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷) | 
| 7 | 4, 6 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑤 = ∅ → (Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ ∅ Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)) | 
| 8 | 3, 7 | imbi12d 234 | 
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))) | 
| 9 | 8 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)))) | 
| 10 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) | 
| 11 |   | sumeq1 11520 | 
. . . . . . 7
⊢ (𝑤 = 𝑥 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶) | 
| 12 |   | iuneq1 3929 | 
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)) | 
| 13 | 12 | sumeq1d 11531 | 
. . . . . . 7
⊢ (𝑤 = 𝑥 → Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) | 
| 14 | 11, 13 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑤 = 𝑥 → (Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷)) | 
| 15 | 10, 14 | imbi12d 234 | 
. . . . 5
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥 ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷))) | 
| 16 | 15 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥 ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷)))) | 
| 17 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤 ⊆ 𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴)) | 
| 18 |   | sumeq1 11520 | 
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶) | 
| 19 |   | iuneq1 3929 | 
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵) = ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) | 
| 20 | 19 | sumeq1d 11531 | 
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) | 
| 21 | 18, 20 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → (Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)) | 
| 22 | 17, 21 | imbi12d 234 | 
. . . . 5
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))) | 
| 23 | 22 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))) | 
| 24 |   | sseq1 3206 | 
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | 
| 25 |   | sumeq1 11520 | 
. . . . . . 7
⊢ (𝑤 = 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) | 
| 26 |   | iuneq1 3929 | 
. . . . . . . 8
⊢ (𝑤 = 𝐴 → ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) | 
| 27 | 26 | sumeq1d 11531 | 
. . . . . . 7
⊢ (𝑤 = 𝐴 → Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) | 
| 28 | 25, 27 | eqeq12d 2211 | 
. . . . . 6
⊢ (𝑤 = 𝐴 → (Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷)) | 
| 29 | 24, 28 | imbi12d 234 | 
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴 ⊆ 𝐴 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷))) | 
| 30 | 29 | imbi2d 230 | 
. . . 4
⊢ (𝑤 = 𝐴 → ((𝜑 → (𝑤 ⊆ 𝐴 → Σ𝑗 ∈ 𝑤 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷)))) | 
| 31 |   | sum0 11553 | 
. . . . . 6
⊢
Σ𝑧 ∈
∅ 𝐷 =
0 | 
| 32 |   | 0iun 3974 | 
. . . . . . 7
⊢ ∪ 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅ | 
| 33 | 32 | sumeq1i 11528 | 
. . . . . 6
⊢
Σ𝑧 ∈
∪ 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∅ 𝐷 | 
| 34 |   | sum0 11553 | 
. . . . . 6
⊢
Σ𝑗 ∈
∅ Σ𝑘 ∈
𝐵 𝐶 = 0 | 
| 35 | 31, 33, 34 | 3eqtr4ri 2228 | 
. . . . 5
⊢
Σ𝑗 ∈
∅ Σ𝑘 ∈
𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 | 
| 36 | 35 | 2a1i 27 | 
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)) | 
| 37 |   | ssun1 3326 | 
. . . . . . . . 9
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑦}) | 
| 38 |   | sstr 3191 | 
. . . . . . . . 9
⊢ ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) | 
| 39 | 37, 38 | mpan 424 | 
. . . . . . . 8
⊢ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → 𝑥 ⊆ 𝐴) | 
| 40 | 39 | imim1i 60 | 
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷)) | 
| 41 |   | fsum2d.1 | 
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) | 
| 42 | 2 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin) | 
| 43 |   | simpll 527 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑) | 
| 44 |   | fsum2d.3 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) | 
| 45 | 43, 44 | sylan 283 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) | 
| 46 |   | fsum2d.4 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) | 
| 47 | 43, 46 | sylan 283 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) | 
| 48 |   | simplrr 536 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦 ∈ 𝑥) | 
| 49 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴) | 
| 50 |   | simplrl 535 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin) | 
| 51 |   | biid 171 | 
. . . . . . . . . 10
⊢
(Σ𝑗 ∈
𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) | 
| 52 | 41, 42, 45, 47, 48, 49, 50, 51 | fsum2dlemstep 11599 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) | 
| 53 | 52 | exp31 364 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))) | 
| 54 | 53 | a2d 26 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))) | 
| 55 | 40, 54 | syl5 32 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥)) → ((𝑥 ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))) | 
| 56 | 55 | expcom 116 | 
. . . . 5
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))) | 
| 57 | 56 | a2d 26 | 
. . . 4
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐴 → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))) | 
| 58 | 9, 16, 23, 30, 36, 57 | findcard2s 6951 | 
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝐴 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷))) | 
| 59 | 2, 58 | mpcom 36 | 
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷)) | 
| 60 | 1, 59 | mpi 15 | 
1
⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |