ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum2d GIF version

Theorem fsum2d 11578
Description: Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fsum2d.2 (𝜑𝐴 ∈ Fin)
fsum2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fsum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsum2d (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐴   𝐵,𝑘,𝑧   𝐷,𝑗,𝑘   𝑧,𝐶   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fsum2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3199 . 2 𝐴𝐴
2 fsum2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3202 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 11498 . . . . . . 7 (𝑤 = ∅ → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶)
5 iuneq1 3925 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
65sumeq1d 11509 . . . . . . 7 (𝑤 = ∅ → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)
74, 6eqeq12d 2208 . . . . . 6 (𝑤 = ∅ → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
83, 7imbi12d 234 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)))
98imbi2d 230 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))))
10 sseq1 3202 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 11498 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝑥 Σ𝑘𝐵 𝐶)
12 iuneq1 3925 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1312sumeq1d 11509 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1411, 13eqeq12d 2208 . . . . . 6 (𝑤 = 𝑥 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1510, 14imbi12d 234 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1615imbi2d 230 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
17 sseq1 3202 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 11498 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶)
19 iuneq1 3925 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2019sumeq1d 11509 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2118, 20eqeq12d 2208 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2217, 21imbi12d 234 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2322imbi2d 230 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
24 sseq1 3202 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 11498 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐶)
26 iuneq1 3925 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2726sumeq1d 11509 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
2825, 27eqeq12d 2208 . . . . . 6 (𝑤 = 𝐴 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
2924, 28imbi12d 234 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3029imbi2d 230 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
31 sum0 11531 . . . . . 6 Σ𝑧 ∈ ∅ 𝐷 = 0
32 0iun 3970 . . . . . . 7 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
3332sumeq1i 11506 . . . . . 6 Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∅ 𝐷
34 sum0 11531 . . . . . 6 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3531, 33, 343eqtr4ri 2225 . . . . 5 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷
36352a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
37 ssun1 3322 . . . . . . . . 9 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3187 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 424 . . . . . . . 8 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 60 . . . . . . 7 ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fsum2d.1 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 simpll 527 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
44 fsum2d.3 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4543, 44sylan 283 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fsum2d.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4743, 46sylan 283 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
48 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
49 simpr 110 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
50 simplrl 535 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
51 biid 171 . . . . . . . . . 10 𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5241, 42, 45, 47, 48, 49, 50, 51fsum2dlemstep 11577 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5352exp31 364 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5453a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5540, 54syl5 32 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5655expcom 116 . . . . 5 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → (𝜑 → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756a2d 26 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
589, 16, 23, 30, 36, 57findcard2s 6946 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
592, 58mpcom 36 . 2 (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
601, 59mpi 15 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2164  cun 3151  wss 3153  c0 3446  {csn 3618  cop 3621   ciun 3912   × cxp 4657  Fincfn 6794  cc 7870  0cc0 7872  Σcsu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  fsumxp  11579  fisumcom2  11581
  Copyright terms: Public domain W3C validator