ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum2d GIF version

Theorem fsum2d 11236
Description: Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fsum2d.2 (𝜑𝐴 ∈ Fin)
fsum2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fsum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsum2d (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐴   𝐵,𝑘,𝑧   𝐷,𝑗,𝑘   𝑧,𝐶   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fsum2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3122 . 2 𝐴𝐴
2 fsum2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3125 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 11156 . . . . . . 7 (𝑤 = ∅ → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶)
5 iuneq1 3834 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
65sumeq1d 11167 . . . . . . 7 (𝑤 = ∅ → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)
74, 6eqeq12d 2155 . . . . . 6 (𝑤 = ∅ → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
83, 7imbi12d 233 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)))
98imbi2d 229 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))))
10 sseq1 3125 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 11156 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝑥 Σ𝑘𝐵 𝐶)
12 iuneq1 3834 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1312sumeq1d 11167 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1411, 13eqeq12d 2155 . . . . . 6 (𝑤 = 𝑥 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1510, 14imbi12d 233 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1615imbi2d 229 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
17 sseq1 3125 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 11156 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶)
19 iuneq1 3834 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2019sumeq1d 11167 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2118, 20eqeq12d 2155 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2217, 21imbi12d 233 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2322imbi2d 229 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
24 sseq1 3125 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 11156 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐶)
26 iuneq1 3834 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2726sumeq1d 11167 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
2825, 27eqeq12d 2155 . . . . . 6 (𝑤 = 𝐴 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
2924, 28imbi12d 233 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3029imbi2d 229 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
31 sum0 11189 . . . . . 6 Σ𝑧 ∈ ∅ 𝐷 = 0
32 0iun 3878 . . . . . . 7 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
3332sumeq1i 11164 . . . . . 6 Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∅ 𝐷
34 sum0 11189 . . . . . 6 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3531, 33, 343eqtr4ri 2172 . . . . 5 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷
36352a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
37 ssun1 3244 . . . . . . . . 9 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3110 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 421 . . . . . . . 8 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 60 . . . . . . 7 ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fsum2d.1 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 simpll 519 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
44 fsum2d.3 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4543, 44sylan 281 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fsum2d.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4743, 46sylan 281 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
48 simplrr 526 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
49 simpr 109 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
50 simplrl 525 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
51 biid 170 . . . . . . . . . 10 𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5241, 42, 45, 47, 48, 49, 50, 51fsum2dlemstep 11235 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5352exp31 362 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5453a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5540, 54syl5 32 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5655expcom 115 . . . . 5 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → (𝜑 → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756a2d 26 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
589, 16, 23, 30, 36, 57findcard2s 6792 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
592, 58mpcom 36 . 2 (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
601, 59mpi 15 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1332  wcel 1481  cun 3074  wss 3076  c0 3368  {csn 3532  cop 3535   ciun 3821   × cxp 4545  Fincfn 6642  cc 7642  0cc0 7644  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  fsumxp  11237  fisumcom2  11239
  Copyright terms: Public domain W3C validator