ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum2d GIF version

Theorem fsum2d 11376
Description: Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fsum2d.2 (𝜑𝐴 ∈ Fin)
fsum2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fsum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsum2d (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐴   𝐵,𝑘,𝑧   𝐷,𝑗,𝑘   𝑧,𝐶   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fsum2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3162 . 2 𝐴𝐴
2 fsum2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3165 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 11296 . . . . . . 7 (𝑤 = ∅ → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶)
5 iuneq1 3879 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
65sumeq1d 11307 . . . . . . 7 (𝑤 = ∅ → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)
74, 6eqeq12d 2180 . . . . . 6 (𝑤 = ∅ → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
83, 7imbi12d 233 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷)))
98imbi2d 229 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))))
10 sseq1 3165 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
11 sumeq1 11296 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝑥 Σ𝑘𝐵 𝐶)
12 iuneq1 3879 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1312sumeq1d 11307 . . . . . . 7 (𝑤 = 𝑥 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1411, 13eqeq12d 2180 . . . . . 6 (𝑤 = 𝑥 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1510, 14imbi12d 233 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1615imbi2d 229 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
17 sseq1 3165 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
18 sumeq1 11296 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶)
19 iuneq1 3879 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2019sumeq1d 11307 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2118, 20eqeq12d 2180 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2217, 21imbi12d 233 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2322imbi2d 229 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
24 sseq1 3165 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
25 sumeq1 11296 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐶)
26 iuneq1 3879 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2726sumeq1d 11307 . . . . . . 7 (𝑤 = 𝐴 → Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
2825, 27eqeq12d 2180 . . . . . 6 (𝑤 = 𝐴 → (Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
2924, 28imbi12d 233 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3029imbi2d 229 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → Σ𝑗𝑤 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
31 sum0 11329 . . . . . 6 Σ𝑧 ∈ ∅ 𝐷 = 0
32 0iun 3923 . . . . . . 7 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
3332sumeq1i 11304 . . . . . 6 Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷 = Σ𝑧 ∈ ∅ 𝐷
34 sum0 11329 . . . . . 6 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3531, 33, 343eqtr4ri 2197 . . . . 5 Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷
36352a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑗 ∈ ∅ Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐷))
37 ssun1 3285 . . . . . . . . 9 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3150 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 421 . . . . . . . 8 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 60 . . . . . . 7 ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fsum2d.1 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 simpll 519 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝜑)
44 fsum2d.3 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4543, 44sylan 281 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
46 fsum2d.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4743, 46sylan 281 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
48 simplrr 526 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
49 simpr 109 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
50 simplrl 525 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
51 biid 170 . . . . . . . . . 10 𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5241, 42, 45, 47, 48, 49, 50, 51fsum2dlemstep 11375 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5352exp31 362 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5453a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5540, 54syl5 32 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5655expcom 115 . . . . 5 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → (𝜑 → ((𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5756a2d 26 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
589, 16, 23, 30, 36, 57findcard2s 6856 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
592, 58mpcom 36 . 2 (𝜑 → (𝐴𝐴 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
601, 59mpi 15 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136  cun 3114  wss 3116  c0 3409  {csn 3576  cop 3579   ciun 3866   × cxp 4602  Fincfn 6706  cc 7751  0cc0 7753  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  fsumxp  11377  fisumcom2  11379
  Copyright terms: Public domain W3C validator