| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnwetri | GIF version | ||
| Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) |
| Ref | Expression |
|---|---|
| nnwetri | ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 4703 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | ordwe 4667 | . . 3 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ω → E We 𝐴) |
| 4 | simprl 529 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
| 5 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ∈ ω) | |
| 6 | elnn 4697 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 7 | 4, 5, 6 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ω) |
| 8 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
| 9 | elnn 4697 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
| 10 | 8, 5, 9 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ω) |
| 11 | nntri3or 6637 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 12 | epel 4382 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 13 | biid 171 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 14 | epel 4382 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 15 | 12, 13, 14 | 3orbi123i 1213 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 16 | 11, 15 | sylibr 134 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 17 | 7, 10, 16 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 18 | 17 | ralrimivva 2612 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
| 19 | 3, 18 | jca 306 | 1 ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 1001 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 E cep 4377 We wwe 4420 Ord word 4452 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-eprel 4379 df-frfor 4421 df-frind 4422 df-wetr 4424 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |