ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwetri GIF version

Theorem nnwetri 6974
Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
Assertion
Ref Expression
nnwetri (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem nnwetri
StepHypRef Expression
1 nnord 4645 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordwe 4609 . . 3 (Ord 𝐴 → E We 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ ω → E We 𝐴)
4 simprl 529 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
5 simpl 109 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ∈ ω)
6 elnn 4639 . . . . 5 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
74, 5, 6syl2anc 411 . . . 4 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ω)
8 simprr 531 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
9 elnn 4639 . . . . 5 ((𝑦𝐴𝐴 ∈ ω) → 𝑦 ∈ ω)
108, 5, 9syl2anc 411 . . . 4 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ω)
11 nntri3or 6548 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
12 epel 4324 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
13 biid 171 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
14 epel 4324 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
1512, 13, 143orbi123i 1191 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
1611, 15sylibr 134 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
177, 10, 16syl2anc 411 . . 3 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1817ralrimivva 2576 . 2 (𝐴 ∈ ω → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
193, 18jca 306 1 (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979  wcel 2164  wral 2472   class class class wbr 4030   E cep 4319   We wwe 4362  Ord word 4394  ωcom 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-eprel 4321  df-frfor 4363  df-frind 4364  df-wetr 4366  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator