| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnwetri | GIF version | ||
| Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| nnwetri | ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnord 4648 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | ordwe 4612 | . . 3 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ω → E We 𝐴) | 
| 4 | simprl 529 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
| 5 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ∈ ω) | |
| 6 | elnn 4642 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
| 7 | 4, 5, 6 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ω) | 
| 8 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
| 9 | elnn 4642 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
| 10 | 8, 5, 9 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ω) | 
| 11 | nntri3or 6551 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
| 12 | epel 4327 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 13 | biid 171 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
| 14 | epel 4327 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 15 | 12, 13, 14 | 3orbi123i 1191 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | 
| 16 | 11, 15 | sylibr 134 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) | 
| 17 | 7, 10, 16 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) | 
| 18 | 17 | ralrimivva 2579 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) | 
| 19 | 3, 18 | jca 306 | 1 ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 E cep 4322 We wwe 4365 Ord word 4397 ωcom 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-eprel 4324 df-frfor 4366 df-frind 4367 df-wetr 4369 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |