Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnwetri | GIF version |
Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) |
Ref | Expression |
---|---|
nnwetri | ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 4589 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | ordwe 4553 | . . 3 ⊢ (Ord 𝐴 → E We 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ω → E We 𝐴) |
4 | simprl 521 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
5 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ∈ ω) | |
6 | elnn 4583 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
7 | 4, 5, 6 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ω) |
8 | simprr 522 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
9 | elnn 4583 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
10 | 8, 5, 9 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ω) |
11 | nntri3or 6461 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
12 | epel 4270 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
13 | biid 170 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
14 | epel 4270 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
15 | 12, 13, 14 | 3orbi123i 1179 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
16 | 11, 15 | sylibr 133 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
17 | 7, 10, 16 | syl2anc 409 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
18 | 17 | ralrimivva 2548 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
19 | 3, 18 | jca 304 | 1 ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ w3o 967 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 E cep 4265 We wwe 4308 Ord word 4340 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-eprel 4267 df-frfor 4309 df-frind 4310 df-wetr 4312 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |