![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnwetri | GIF version |
Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) |
Ref | Expression |
---|---|
nnwetri | ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 4483 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | ordwe 4448 | . . 3 ⊢ (Ord 𝐴 → E We 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ω → E We 𝐴) |
4 | simprl 503 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
5 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ∈ ω) | |
6 | elnn 4477 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑥 ∈ ω) | |
7 | 4, 5, 6 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ω) |
8 | simprr 504 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
9 | elnn 4477 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝑦 ∈ ω) | |
10 | 8, 5, 9 | syl2anc 406 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ω) |
11 | nntri3or 6341 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | |
12 | epel 4172 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
13 | biid 170 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
14 | epel 4172 | . . . . . 6 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
15 | 12, 13, 14 | 3orbi123i 1152 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
16 | 11, 15 | sylibr 133 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
17 | 7, 10, 16 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ ω ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
18 | 17 | ralrimivva 2486 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥)) |
19 | 3, 18 | jca 302 | 1 ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ w3o 942 ∈ wcel 1461 ∀wral 2388 class class class wbr 3893 E cep 4167 We wwe 4210 Ord word 4242 ωcom 4462 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-opab 3948 df-tr 3985 df-eprel 4169 df-frfor 4211 df-frind 4212 df-wetr 4214 df-iord 4246 df-on 4248 df-suc 4251 df-iom 4463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |