ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwetri GIF version

Theorem nnwetri 6986
Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
Assertion
Ref Expression
nnwetri (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem nnwetri
StepHypRef Expression
1 nnord 4649 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordwe 4613 . . 3 (Ord 𝐴 → E We 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ ω → E We 𝐴)
4 simprl 529 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
5 simpl 109 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ∈ ω)
6 elnn 4643 . . . . 5 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
74, 5, 6syl2anc 411 . . . 4 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ω)
8 simprr 531 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
9 elnn 4643 . . . . 5 ((𝑦𝐴𝐴 ∈ ω) → 𝑦 ∈ ω)
108, 5, 9syl2anc 411 . . . 4 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ω)
11 nntri3or 6560 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
12 epel 4328 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
13 biid 171 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
14 epel 4328 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
1512, 13, 143orbi123i 1191 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
1611, 15sylibr 134 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
177, 10, 16syl2anc 411 . . 3 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1817ralrimivva 2579 . 2 (𝐴 ∈ ω → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
193, 18jca 306 1 (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979  wcel 2167  wral 2475   class class class wbr 4034   E cep 4323   We wwe 4366  Ord word 4398  ωcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-tr 4133  df-eprel 4325  df-frfor 4367  df-frind 4368  df-wetr 4370  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator