ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwetri GIF version

Theorem nnwetri 6755
Description: A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
Assertion
Ref Expression
nnwetri (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem nnwetri
StepHypRef Expression
1 nnord 4483 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordwe 4448 . . 3 (Ord 𝐴 → E We 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ ω → E We 𝐴)
4 simprl 503 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
5 simpl 108 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ∈ ω)
6 elnn 4477 . . . . 5 ((𝑥𝐴𝐴 ∈ ω) → 𝑥 ∈ ω)
74, 5, 6syl2anc 406 . . . 4 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ω)
8 simprr 504 . . . . 5 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
9 elnn 4477 . . . . 5 ((𝑦𝐴𝐴 ∈ ω) → 𝑦 ∈ ω)
108, 5, 9syl2anc 406 . . . 4 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ω)
11 nntri3or 6341 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
12 epel 4172 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
13 biid 170 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
14 epel 4172 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
1512, 13, 143orbi123i 1152 . . . . 5 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
1611, 15sylibr 133 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
177, 10, 16syl2anc 406 . . 3 ((𝐴 ∈ ω ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1817ralrimivva 2486 . 2 (𝐴 ∈ ω → ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
193, 18jca 302 1 (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3o 942  wcel 1461  wral 2388   class class class wbr 3893   E cep 4167   We wwe 4210  Ord word 4242  ωcom 4462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-tr 3985  df-eprel 4169  df-frfor 4211  df-frind 4212  df-wetr 4214  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator