| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniex2 | GIF version | ||
| Description: uniex2 4471 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-uniex2 | ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdcuni 15522 | . . . 4 ⊢ BOUNDED ∪ 𝑥 | |
| 2 | 1 | bdeli 15492 | . . 3 ⊢ BOUNDED 𝑧 ∈ ∪ 𝑥 | 
| 3 | zfun 4469 | . . . 4 ⊢ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 4 | eluni 3842 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) | |
| 5 | 4 | imbi1i 238 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | 
| 6 | 5 | albii 1484 | . . . . 5 ⊢ (∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | 
| 7 | 6 | exbii 1619 | . . . 4 ⊢ (∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | 
| 8 | 3, 7 | mpbir 146 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) | 
| 9 | 2, 8 | bdbm1.3ii 15537 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥) | 
| 10 | dfcleq 2190 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) | |
| 11 | 10 | exbii 1619 | . 2 ⊢ (∃𝑦 𝑦 = ∪ 𝑥 ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) | 
| 12 | 9, 11 | mpbir 146 | 1 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∪ cuni 3839 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-un 4468 ax-bd0 15459 ax-bdex 15465 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-uni 3840 df-bdc 15487 | 
| This theorem is referenced by: bj-uniex 15563 | 
| Copyright terms: Public domain | W3C validator |