Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex2 GIF version

Theorem bj-uniex2 16051
Description: uniex2 4501 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniex2 𝑦 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-uniex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdcuni 16011 . . . 4 BOUNDED 𝑥
21bdeli 15981 . . 3 BOUNDED 𝑧 𝑥
3 zfun 4499 . . . 4 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
4 eluni 3867 . . . . . . 7 (𝑧 𝑥 ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
54imbi1i 238 . . . . . 6 ((𝑧 𝑥𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
65albii 1494 . . . . 5 (∀𝑧(𝑧 𝑥𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
76exbii 1629 . . . 4 (∃𝑦𝑧(𝑧 𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
83, 7mpbir 146 . . 3 𝑦𝑧(𝑧 𝑥𝑧𝑦)
92, 8bdbm1.3ii 16026 . 2 𝑦𝑧(𝑧𝑦𝑧 𝑥)
10 dfcleq 2201 . . 3 (𝑦 = 𝑥 ↔ ∀𝑧(𝑧𝑦𝑧 𝑥))
1110exbii 1629 . 2 (∃𝑦 𝑦 = 𝑥 ↔ ∃𝑦𝑧(𝑧𝑦𝑧 𝑥))
129, 11mpbir 146 1 𝑦 𝑦 = 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2178   cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-un 4498  ax-bd0 15948  ax-bdex 15954  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-uni 3865  df-bdc 15976
This theorem is referenced by:  bj-uniex  16052
  Copyright terms: Public domain W3C validator