Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniex2 GIF version

Theorem bj-uniex2 14753
Description: uniex2 4438 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniex2 𝑦 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-uniex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdcuni 14713 . . . 4 BOUNDED 𝑥
21bdeli 14683 . . 3 BOUNDED 𝑧 𝑥
3 zfun 4436 . . . 4 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
4 eluni 3814 . . . . . . 7 (𝑧 𝑥 ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
54imbi1i 238 . . . . . 6 ((𝑧 𝑥𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
65albii 1470 . . . . 5 (∀𝑧(𝑧 𝑥𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
76exbii 1605 . . . 4 (∃𝑦𝑧(𝑧 𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
83, 7mpbir 146 . . 3 𝑦𝑧(𝑧 𝑥𝑧𝑦)
92, 8bdbm1.3ii 14728 . 2 𝑦𝑧(𝑧𝑦𝑧 𝑥)
10 dfcleq 2171 . . 3 (𝑦 = 𝑥 ↔ ∀𝑧(𝑧𝑦𝑧 𝑥))
1110exbii 1605 . 2 (∃𝑦 𝑦 = 𝑥 ↔ ∃𝑦𝑧(𝑧𝑦𝑧 𝑥))
129, 11mpbir 146 1 𝑦 𝑦 = 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  wcel 2148   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-un 4435  ax-bd0 14650  ax-bdex 14656  ax-bdel 14658  ax-bdsb 14659  ax-bdsep 14721
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-uni 3812  df-bdc 14678
This theorem is referenced by:  bj-uniex  14754
  Copyright terms: Public domain W3C validator