Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sels GIF version

Theorem bj-sels 13500
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
Assertion
Ref Expression
bj-sels (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-sels
StepHypRef Expression
1 snidg 3589 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
2 bj-snexg 13498 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
3 sbcel2g 3052 . . . . 5 ({𝐴} ∈ V → ([{𝐴} / 𝑥]𝐴𝑥𝐴{𝐴} / 𝑥𝑥))
42, 3syl 14 . . . 4 (𝐴𝑉 → ([{𝐴} / 𝑥]𝐴𝑥𝐴{𝐴} / 𝑥𝑥))
5 csbvarg 3059 . . . . . 6 ({𝐴} ∈ V → {𝐴} / 𝑥𝑥 = {𝐴})
62, 5syl 14 . . . . 5 (𝐴𝑉{𝐴} / 𝑥𝑥 = {𝐴})
76eleq2d 2227 . . . 4 (𝐴𝑉 → (𝐴{𝐴} / 𝑥𝑥𝐴 ∈ {𝐴}))
84, 7bitrd 187 . . 3 (𝐴𝑉 → ([{𝐴} / 𝑥]𝐴𝑥𝐴 ∈ {𝐴}))
91, 8mpbird 166 . 2 (𝐴𝑉[{𝐴} / 𝑥]𝐴𝑥)
109spesbcd 3023 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wex 1472  wcel 2128  Vcvv 2712  [wsbc 2937  csb 3031  {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-pr 4169  ax-bdor 13402  ax-bdeq 13406  ax-bdsep 13470
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator