![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sels | GIF version |
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
Ref | Expression |
---|---|
bj-sels | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3647 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | bj-snexg 15342 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
3 | sbcel2g 3101 | . . . . 5 ⊢ ({𝐴} ∈ V → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥)) |
5 | csbvarg 3108 | . . . . . 6 ⊢ ({𝐴} ∈ V → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) | |
6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) |
7 | 6 | eleq2d 2263 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥 ↔ 𝐴 ∈ {𝐴})) |
8 | 4, 7 | bitrd 188 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) |
9 | 1, 8 | mpbird 167 | . 2 ⊢ (𝐴 ∈ 𝑉 → [{𝐴} / 𝑥]𝐴 ∈ 𝑥) |
10 | 9 | spesbcd 3072 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 [wsbc 2985 ⦋csb 3080 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-pr 4238 ax-bdor 15246 ax-bdeq 15250 ax-bdsep 15314 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-sn 3624 df-pr 3625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |