Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sels GIF version

Theorem bj-sels 15527
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
Assertion
Ref Expression
bj-sels (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-sels
StepHypRef Expression
1 snidg 3651 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
2 bj-snexg 15525 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
3 sbcel2g 3105 . . . . 5 ({𝐴} ∈ V → ([{𝐴} / 𝑥]𝐴𝑥𝐴{𝐴} / 𝑥𝑥))
42, 3syl 14 . . . 4 (𝐴𝑉 → ([{𝐴} / 𝑥]𝐴𝑥𝐴{𝐴} / 𝑥𝑥))
5 csbvarg 3112 . . . . . 6 ({𝐴} ∈ V → {𝐴} / 𝑥𝑥 = {𝐴})
62, 5syl 14 . . . . 5 (𝐴𝑉{𝐴} / 𝑥𝑥 = {𝐴})
76eleq2d 2266 . . . 4 (𝐴𝑉 → (𝐴{𝐴} / 𝑥𝑥𝐴 ∈ {𝐴}))
84, 7bitrd 188 . . 3 (𝐴𝑉 → ([{𝐴} / 𝑥]𝐴𝑥𝐴 ∈ {𝐴}))
91, 8mpbird 167 . 2 (𝐴𝑉[{𝐴} / 𝑥]𝐴𝑥)
109spesbcd 3076 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  [wsbc 2989  csb 3084  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-bdor 15429  ax-bdeq 15433  ax-bdsep 15497
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator