Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sels GIF version

Theorem bj-sels 13796
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
Assertion
Ref Expression
bj-sels (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-sels
StepHypRef Expression
1 snidg 3605 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
2 bj-snexg 13794 . . . . 5 (𝐴𝑉 → {𝐴} ∈ V)
3 sbcel2g 3066 . . . . 5 ({𝐴} ∈ V → ([{𝐴} / 𝑥]𝐴𝑥𝐴{𝐴} / 𝑥𝑥))
42, 3syl 14 . . . 4 (𝐴𝑉 → ([{𝐴} / 𝑥]𝐴𝑥𝐴{𝐴} / 𝑥𝑥))
5 csbvarg 3073 . . . . . 6 ({𝐴} ∈ V → {𝐴} / 𝑥𝑥 = {𝐴})
62, 5syl 14 . . . . 5 (𝐴𝑉{𝐴} / 𝑥𝑥 = {𝐴})
76eleq2d 2236 . . . 4 (𝐴𝑉 → (𝐴{𝐴} / 𝑥𝑥𝐴 ∈ {𝐴}))
84, 7bitrd 187 . . 3 (𝐴𝑉 → ([{𝐴} / 𝑥]𝐴𝑥𝐴 ∈ {𝐴}))
91, 8mpbird 166 . 2 (𝐴𝑉[{𝐴} / 𝑥]𝐴𝑥)
109spesbcd 3037 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  [wsbc 2951  csb 3045  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-pr 4187  ax-bdor 13698  ax-bdeq 13702  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator