| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sels | GIF version | ||
| Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-sels | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 3662 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | bj-snexg 15848 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 3 | sbcel2g 3114 | . . . . 5 ⊢ ({𝐴} ∈ V → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥)) |
| 5 | csbvarg 3121 | . . . . . 6 ⊢ ({𝐴} ∈ V → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) | |
| 6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) |
| 7 | 6 | eleq2d 2275 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥 ↔ 𝐴 ∈ {𝐴})) |
| 8 | 4, 7 | bitrd 188 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) |
| 9 | 1, 8 | mpbird 167 | . 2 ⊢ (𝐴 ∈ 𝑉 → [{𝐴} / 𝑥]𝐴 ∈ 𝑥) |
| 10 | 9 | spesbcd 3085 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 [wsbc 2998 ⦋csb 3093 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-pr 4253 ax-bdor 15752 ax-bdeq 15756 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |