HomeHome Intuitionistic Logic Explorer
Theorem List (p. 52 of 114)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5101-5200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfnimadisj 5101 A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfnimaeq0 5102 Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
 
Theoremdfmpt3 5103 Alternate definition for the maps-to notation df-mpt 3878. (Contributed by Mario Carneiro, 30-Dec-2016.)
(𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
 
Theoremfnopabg 5104* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
 
Theoremfnopab 5105* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
(𝑥𝐴 → ∃!𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       𝐹 Fn 𝐴
 
Theoremmptfng 5106* The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
 
Theoremfnmpt 5107* The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
 
Theoremmpt0 5108 A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝑥 ∈ ∅ ↦ 𝐴) = ∅
 
Theoremfnmpti 5109* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       𝐹 Fn 𝐴
 
Theoremdmmpti 5110* Domain of an ordered-pair class abstraction that specifies a function. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       dom 𝐹 = 𝐴
 
Theoremmptun 5111 Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
(𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
 
Theoremfeq1 5112 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2 5113 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3 5114 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
 
Theoremfeq23 5115 Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremfeq1d 5116 Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2d 5117 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq12d 5118 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
 
Theoremfeq123d 5119 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
 
Theoremfeq123 5120 Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
 
Theoremfeq1i 5121 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹:𝐴𝐵𝐺:𝐴𝐵)
 
Theoremfeq2i 5122 Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
𝐴 = 𝐵       (𝐹:𝐴𝐶𝐹:𝐵𝐶)
 
Theoremfeq23i 5123 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐶    &   𝐵 = 𝐷       (𝐹:𝐴𝐵𝐹:𝐶𝐷)
 
Theoremfeq23d 5124 Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremnff 5125 Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴𝐵
 
Theoremsbcfng 5126* Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
 
Theoremsbcfg 5127* Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
 
Theoremffn 5128 A mapping is a function. (Contributed by NM, 2-Aug-1994.)
(𝐹:𝐴𝐵𝐹 Fn 𝐴)
 
Theoremffnd 5129 A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹 Fn 𝐴)
 
Theoremdffn2 5130 Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn 𝐴𝐹:𝐴⟶V)
 
Theoremffun 5131 A mapping is a function. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → Fun 𝐹)
 
Theoremfrel 5132 A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → Rel 𝐹)
 
Theoremfdm 5133 The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
(𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
 
Theoremfdmd 5134 Deduction form of fdm 5133. The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → dom 𝐹 = 𝐴)
 
Theoremfdmi 5135 The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
𝐹:𝐴𝐵       dom 𝐹 = 𝐴
 
Theoremfrn 5136 The range of a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → ran 𝐹𝐵)
 
Theoremdffn3 5137 A function maps to its range. (Contributed by NM, 1-Sep-1999.)
(𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
 
Theoremfss 5138 Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
 
Theoremfssd 5139 Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremfssdmd 5140 Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐷 ⊆ dom 𝐹)       (𝜑𝐷𝐴)
 
Theoremfssdm 5141 Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
𝐷 ⊆ dom 𝐹    &   (𝜑𝐹:𝐴𝐵)       (𝜑𝐷𝐴)
 
Theoremfco 5142 Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
 
Theoremfco2 5143 Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
(((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
 
Theoremfssxp 5144 A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
 
Theoremfex2 5145 A function with bounded domain and range is a set. This version is proven without the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
 
Theoremfunssxp 5146 Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.)
((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
 
Theoremffdm 5147 A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
(𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
 
Theoremopelf 5148 The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))
 
Theoremfun 5149 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
 
Theoremfun2 5150 The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
 
Theoremfnfco 5151 Composition of two functions. (Contributed by NM, 22-May-2006.)
((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfssres 5152 Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfssres2 5153 Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
(((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfresin 5154 An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
(𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
 
Theoremresasplitss 5155 If two functions agree on their common domain, their union contains a union of three functions with pairwise disjoint domains. If we assumed the law of the excluded middle, this would be equality rather than subset. (Contributed by Jim Kingdon, 28-Dec-2018.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ⊆ (𝐹𝐺))
 
Theoremfcoi1 5156 Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
 
Theoremfcoi2 5157 Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
 
Theoremfeu 5158* There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
 
Theoremfcnvres 5159 The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
(𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
 
Theoremfimacnvdisj 5160 The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfintm 5161* Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
𝑥 𝑥𝐵       (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
 
Theoremfin 5162 Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))
 
Theoremfabexg 5163* Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}       ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
 
Theoremfabex 5164* Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}       𝐹 ∈ V
 
Theoremdmfex 5165 If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
 
Theoremf0 5166 The empty function. (Contributed by NM, 14-Aug-1999.)
∅:∅⟶𝐴
 
Theoremf00 5167 A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
(𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremf0bi 5168 A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
(𝐹:∅⟶𝑋𝐹 = ∅)
 
Theoremf0dom0 5169 A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
(𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
 
Theoremf0rn0 5170* If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
 
Theoremfconst 5171 A cross product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
𝐵 ∈ V       (𝐴 × {𝐵}):𝐴⟶{𝐵}
 
Theoremfconstg 5172 A cross product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
(𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
 
Theoremfnconstg 5173 A cross product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
(𝐵𝑉 → (𝐴 × {𝐵}) Fn 𝐴)
 
Theoremfconst6g 5174 Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
 
Theoremfconst6 5175 A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
𝐵𝐶       (𝐴 × {𝐵}):𝐴𝐶
 
Theoremf1eq1 5176 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
 
Theoremf1eq2 5177 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
 
Theoremf1eq3 5178 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
 
Theoremnff1 5179 Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴1-1𝐵
 
Theoremdff12 5180* Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
 
Theoremf1f 5181 A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
 
Theoremf1rn 5182 The range of a one-to-one mapping. (Contributed by BJ, 6-Jul-2022.)
(𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
 
Theoremf1fn 5183 A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
 
Theoremf1fun 5184 A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Fun 𝐹)
 
Theoremf1rel 5185 A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Rel 𝐹)
 
Theoremf1dm 5186 The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
 
Theoremf1ss 5187 A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ssr 5188 Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.)
((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ff1 5189 If a function is one-to-one from A to B and is also a function from A to C, then it is a one-to-one function from A to C. (Contributed by BJ, 4-Jul-2022.)
((𝐹:𝐴1-1𝐵𝐹:𝐴𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ssres 5190 A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
 
Theoremf1resf1 5191 The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
(((𝐹:𝐴1-1𝐵𝐶𝐴) ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
 
Theoremf1cnvcnv 5192 Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
(𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
 
Theoremf1co 5193 Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
 
Theoremfoeq1 5194 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
 
Theoremfoeq2 5195 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
 
Theoremfoeq3 5196 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
 
Theoremnffo 5197 Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴onto𝐵
 
Theoremfof 5198 An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
 
Theoremfofun 5199 An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
(𝐹:𝐴onto𝐵 → Fun 𝐹)
 
Theoremfofn 5200 An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.)
(𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11394
  Copyright terms: Public domain < Previous  Next >