ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviota GIF version

Theorem cbviota 5165
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
cbviota.1 (𝑥 = 𝑦 → (𝜑𝜓))
cbviota.2 𝑦𝜑
cbviota.3 𝑥𝜓
Assertion
Ref Expression
cbviota (℩𝑥𝜑) = (℩𝑦𝜓)

Proof of Theorem cbviota
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . . . . 6 𝑧(𝜑𝑥 = 𝑤)
2 nfs1v 1932 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
3 nfv 1521 . . . . . . 7 𝑥 𝑧 = 𝑤
42, 3nfbi 1582 . . . . . 6 𝑥([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
5 sbequ12 1764 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
6 equequ1 1705 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
75, 6bibi12d 234 . . . . . 6 (𝑥 = 𝑧 → ((𝜑𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑𝑧 = 𝑤)))
81, 4, 7cbval 1747 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤))
9 cbviota.2 . . . . . . . 8 𝑦𝜑
109nfsb 1939 . . . . . . 7 𝑦[𝑧 / 𝑥]𝜑
11 nfv 1521 . . . . . . 7 𝑦 𝑧 = 𝑤
1210, 11nfbi 1582 . . . . . 6 𝑦([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
13 nfv 1521 . . . . . 6 𝑧(𝜓𝑦 = 𝑤)
14 sbequ 1833 . . . . . . . 8 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 cbviota.3 . . . . . . . . 9 𝑥𝜓
16 cbviota.1 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16sbie 1784 . . . . . . . 8 ([𝑦 / 𝑥]𝜑𝜓)
1814, 17bitrdi 195 . . . . . . 7 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
19 equequ1 1705 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝑤𝑦 = 𝑤))
2018, 19bibi12d 234 . . . . . 6 (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ (𝜓𝑦 = 𝑤)))
2112, 13, 20cbval 1747 . . . . 5 (∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
228, 21bitri 183 . . . 4 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
2322abbii 2286 . . 3 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2423unieqi 3806 . 2 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
25 dfiota2 5161 . 2 (℩𝑥𝜑) = {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)}
26 dfiota2 5161 . 2 (℩𝑦𝜓) = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2724, 25, 263eqtr4i 2201 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wnf 1453  [wsb 1755  {cab 2156   cuni 3796  cio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-sn 3589  df-uni 3797  df-iota 5160
This theorem is referenced by:  cbviotav  5166  cbvriota  5819
  Copyright terms: Public domain W3C validator