| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1542 |
. . . . . 6
⊢
Ⅎ𝑧(𝜑 ↔ 𝑥 = 𝑤) |
| 2 | | nfs1v 1958 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 3 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = 𝑤 |
| 4 | 2, 3 | nfbi 1603 |
. . . . . 6
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) |
| 5 | | sbequ12 1785 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 6 | | equequ1 1726 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑧 = 𝑤)) |
| 7 | 5, 6 | bibi12d 235 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤))) |
| 8 | 1, 4, 7 | cbval 1768 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤)) |
| 9 | | cbviota.2 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
| 10 | 9 | nfsb 1965 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 11 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 |
| 12 | 10, 11 | nfbi 1603 |
. . . . . 6
⊢
Ⅎ𝑦([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) |
| 13 | | nfv 1542 |
. . . . . 6
⊢
Ⅎ𝑧(𝜓 ↔ 𝑦 = 𝑤) |
| 14 | | sbequ 1854 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 15 | | cbviota.3 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜓 |
| 16 | | cbviota.1 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 17 | 15, 16 | sbie 1805 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 18 | 14, 17 | bitrdi 196 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
| 19 | | equequ1 1726 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑤 ↔ 𝑦 = 𝑤)) |
| 20 | 18, 19 | bibi12d 235 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ (𝜓 ↔ 𝑦 = 𝑤))) |
| 21 | 12, 13, 20 | cbval 1768 |
. . . . 5
⊢
(∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) |
| 22 | 8, 21 | bitri 184 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)) |
| 23 | 22 | abbii 2312 |
. . 3
⊢ {𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
| 24 | 23 | unieqi 3849 |
. 2
⊢ ∪ {𝑤
∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} = ∪ {𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
| 25 | | dfiota2 5220 |
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑤 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)} |
| 26 | | dfiota2 5220 |
. 2
⊢
(℩𝑦𝜓) = ∪
{𝑤 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑤)} |
| 27 | 24, 25, 26 | 3eqtr4i 2227 |
1
⊢
(℩𝑥𝜑) = (℩𝑦𝜓) |