Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviota GIF version

Theorem cbviota 5088
 Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
cbviota.1 (𝑥 = 𝑦 → (𝜑𝜓))
cbviota.2 𝑦𝜑
cbviota.3 𝑥𝜓
Assertion
Ref Expression
cbviota (℩𝑥𝜑) = (℩𝑦𝜓)

Proof of Theorem cbviota
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . . 6 𝑧(𝜑𝑥 = 𝑤)
2 nfs1v 1910 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
3 nfv 1508 . . . . . . 7 𝑥 𝑧 = 𝑤
42, 3nfbi 1568 . . . . . 6 𝑥([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
5 sbequ12 1744 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
6 equequ1 1688 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑤𝑧 = 𝑤))
75, 6bibi12d 234 . . . . . 6 (𝑥 = 𝑧 → ((𝜑𝑥 = 𝑤) ↔ ([𝑧 / 𝑥]𝜑𝑧 = 𝑤)))
81, 4, 7cbval 1727 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤))
9 cbviota.2 . . . . . . . 8 𝑦𝜑
109nfsb 1917 . . . . . . 7 𝑦[𝑧 / 𝑥]𝜑
11 nfv 1508 . . . . . . 7 𝑦 𝑧 = 𝑤
1210, 11nfbi 1568 . . . . . 6 𝑦([𝑧 / 𝑥]𝜑𝑧 = 𝑤)
13 nfv 1508 . . . . . 6 𝑧(𝜓𝑦 = 𝑤)
14 sbequ 1812 . . . . . . . 8 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 cbviota.3 . . . . . . . . 9 𝑥𝜓
16 cbviota.1 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16sbie 1764 . . . . . . . 8 ([𝑦 / 𝑥]𝜑𝜓)
1814, 17syl6bb 195 . . . . . . 7 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
19 equequ1 1688 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝑤𝑦 = 𝑤))
2018, 19bibi12d 234 . . . . . 6 (𝑧 = 𝑦 → (([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ (𝜓𝑦 = 𝑤)))
2112, 13, 20cbval 1727 . . . . 5 (∀𝑧([𝑧 / 𝑥]𝜑𝑧 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
228, 21bitri 183 . . . 4 (∀𝑥(𝜑𝑥 = 𝑤) ↔ ∀𝑦(𝜓𝑦 = 𝑤))
2322abbii 2253 . . 3 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2423unieqi 3741 . 2 {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)} = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
25 dfiota2 5084 . 2 (℩𝑥𝜑) = {𝑤 ∣ ∀𝑥(𝜑𝑥 = 𝑤)}
26 dfiota2 5084 . 2 (℩𝑦𝜓) = {𝑤 ∣ ∀𝑦(𝜓𝑦 = 𝑤)}
2724, 25, 263eqtr4i 2168 1 (℩𝑥𝜑) = (℩𝑦𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  ∀wal 1329   = wceq 1331  Ⅎwnf 1436  [wsb 1735  {cab 2123  ∪ cuni 3731  ℩cio 5081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-sn 3528  df-uni 3732  df-iota 5083 This theorem is referenced by:  cbviotav  5089  cbvriota  5733
 Copyright terms: Public domain W3C validator