| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmo | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| cbvmo.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvmo.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvmo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmo.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvex 1780 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| 5 | 1, 2, 3 | cbveu 2079 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| 6 | 4, 5 | imbi12i 239 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) |
| 7 | df-mo 2059 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 8 | df-mo 2059 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
| 9 | 6, 7, 8 | 3bitr4i 212 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: dffun6f 5293 |
| Copyright terms: Public domain | W3C validator |