Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvmo | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
cbvmo.1 | ⊢ Ⅎ𝑦𝜑 |
cbvmo.2 | ⊢ Ⅎ𝑥𝜓 |
cbvmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvmo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmo.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvex 1736 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
5 | 1, 2, 3 | cbveu 2030 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
6 | 4, 5 | imbi12i 238 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) |
7 | df-mo 2010 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
8 | df-mo 2010 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 211 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1440 ∃wex 1472 ∃!weu 2006 ∃*wmo 2007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 |
This theorem is referenced by: dffun6f 5182 |
Copyright terms: Public domain | W3C validator |