| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmo | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| cbvmo.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvmo.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvmo | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmo.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvex 1770 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| 5 | 1, 2, 3 | cbveu 2069 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| 6 | 4, 5 | imbi12i 239 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) |
| 7 | df-mo 2049 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 8 | df-mo 2049 | . 2 ⊢ (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓)) | |
| 9 | 6, 7, 8 | 3bitr4i 212 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: dffun6f 5272 |
| Copyright terms: Public domain | W3C validator |