ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmo GIF version

Theorem cbvmo 2066
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
cbvmo.1 𝑦𝜑
cbvmo.2 𝑥𝜓
cbvmo.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvmo (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)

Proof of Theorem cbvmo
StepHypRef Expression
1 cbvmo.1 . . . 4 𝑦𝜑
2 cbvmo.2 . . . 4 𝑥𝜓
3 cbvmo.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvex 1756 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
51, 2, 3cbveu 2050 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
64, 5imbi12i 239 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
7 df-mo 2030 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
8 df-mo 2030 . 2 (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
96, 7, 83bitr4i 212 1 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1460  wex 1492  ∃!weu 2026  ∃*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  dffun6f  5231
  Copyright terms: Public domain W3C validator