ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmo GIF version

Theorem cbvmo 2046
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
cbvmo.1 𝑦𝜑
cbvmo.2 𝑥𝜓
cbvmo.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvmo (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)

Proof of Theorem cbvmo
StepHypRef Expression
1 cbvmo.1 . . . 4 𝑦𝜑
2 cbvmo.2 . . . 4 𝑥𝜓
3 cbvmo.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvex 1736 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
51, 2, 3cbveu 2030 . . 3 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
64, 5imbi12i 238 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
7 df-mo 2010 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
8 df-mo 2010 . 2 (∃*𝑦𝜓 ↔ (∃𝑦𝜓 → ∃!𝑦𝜓))
96, 7, 83bitr4i 211 1 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1440  wex 1472  ∃!weu 2006  ∃*wmo 2007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010
This theorem is referenced by:  dffun6f  5182
  Copyright terms: Public domain W3C validator