ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbmo GIF version

Theorem hbmo 2053
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
hbmo.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbmo (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)

Proof of Theorem hbmo
StepHypRef Expression
1 df-mo 2018 . 2 (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑))
2 hbmo.1 . . . 4 (𝜑 → ∀𝑥𝜑)
32hbex 1624 . . 3 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
42hbeu 2035 . . 3 (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
53, 4hbim 1533 . 2 ((∃𝑦𝜑 → ∃!𝑦𝜑) → ∀𝑥(∃𝑦𝜑 → ∃!𝑦𝜑))
61, 5hbxfrbi 1460 1 (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wex 1480  ∃!weu 2014  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  moexexdc  2098  2moex  2100  2euex  2101  2exeu  2106
  Copyright terms: Public domain W3C validator