ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbmo GIF version

Theorem hbmo 2058
Description: Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
hbmo.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbmo (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)

Proof of Theorem hbmo
StepHypRef Expression
1 df-mo 2023 . 2 (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑))
2 hbmo.1 . . . 4 (𝜑 → ∀𝑥𝜑)
32hbex 1629 . . 3 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
42hbeu 2040 . . 3 (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
53, 4hbim 1538 . 2 ((∃𝑦𝜑 → ∃!𝑦𝜑) → ∀𝑥(∃𝑦𝜑 → ∃!𝑦𝜑))
61, 5hbxfrbi 1465 1 (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wex 1485  ∃!weu 2019  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  moexexdc  2103  2moex  2105  2euex  2106  2exeu  2111
  Copyright terms: Public domain W3C validator