Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbveu | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
cbveu.1 | ⊢ Ⅎ𝑦𝜑 |
cbveu.2 | ⊢ Ⅎ𝑥𝜓 |
cbveu.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbveu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveu.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb8eu 2019 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
3 | cbveu.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | cbveu.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbie 1771 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | eubii 2015 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓) |
7 | 2, 6 | bitri 183 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1440 [wsb 1742 ∃!weu 2006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 |
This theorem is referenced by: cbvmo 2046 cbvreu 2678 cbvreucsf 3095 tz6.12f 5496 f1ompt 5617 climeu 11186 |
Copyright terms: Public domain | W3C validator |