| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbveu | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbveu.1 | ⊢ Ⅎ𝑦𝜑 |
| cbveu.2 | ⊢ Ⅎ𝑥𝜓 |
| cbveu.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbveu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveu.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | sb8eu 2090 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
| 3 | cbveu.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | cbveu.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbie 1837 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 6 | 5 | eubii 2086 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓) |
| 7 | 2, 6 | bitri 184 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1506 [wsb 1808 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 |
| This theorem is referenced by: cbvmo 2117 cbvreu 2763 cbvreucsf 3189 tz6.12f 5652 f1ompt 5779 climeu 11793 |
| Copyright terms: Public domain | W3C validator |