ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbveu GIF version

Theorem cbveu 1969
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cbveu.1 𝑦𝜑
cbveu.2 𝑥𝜓
cbveu.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveu (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)

Proof of Theorem cbveu
StepHypRef Expression
1 cbveu.1 . . 3 𝑦𝜑
21sb8eu 1958 . 2 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
3 cbveu.2 . . . 4 𝑥𝜓
4 cbveu.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 1718 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
65eubii 1954 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓)
72, 6bitri 182 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wnf 1392  [wsb 1689  ∃!weu 1945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948
This theorem is referenced by:  cbvmo  1985  cbvreu  2584  cbvreucsf  2981  tz6.12f  5289  f1ompt  5406  climeu  10569
  Copyright terms: Public domain W3C validator