Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbveu | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
cbveu.1 | ⊢ Ⅎ𝑦𝜑 |
cbveu.2 | ⊢ Ⅎ𝑥𝜓 |
cbveu.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbveu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveu.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb8eu 2032 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
3 | cbveu.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | cbveu.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbie 1784 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | eubii 2028 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓) |
7 | 2, 6 | bitri 183 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1453 [wsb 1755 ∃!weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 |
This theorem is referenced by: cbvmo 2059 cbvreu 2694 cbvreucsf 3113 tz6.12f 5525 f1ompt 5647 climeu 11259 |
Copyright terms: Public domain | W3C validator |