ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabcsf GIF version

Theorem cbvrabcsf 3096
Description: A more general version of cbvrab 2710 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.)
Hypotheses
Ref Expression
cbvralcsf.1 𝑦𝐴
cbvralcsf.2 𝑥𝐵
cbvralcsf.3 𝑦𝜑
cbvralcsf.4 𝑥𝜓
cbvralcsf.5 (𝑥 = 𝑦𝐴 = 𝐵)
cbvralcsf.6 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabcsf {𝑥𝐴𝜑} = {𝑦𝐵𝜓}

Proof of Theorem cbvrabcsf
Dummy variables 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . 4 𝑧(𝑥𝐴𝜑)
2 nfcsb1v 3064 . . . . . 6 𝑥𝑧 / 𝑥𝐴
32nfcri 2293 . . . . 5 𝑥 𝑧𝑧 / 𝑥𝐴
4 nfs1v 1919 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1545 . . . 4 𝑥(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 id 19 . . . . . 6 (𝑥 = 𝑧𝑥 = 𝑧)
7 csbeq1a 3040 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
86, 7eleq12d 2228 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
9 sbequ12 1751 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
108, 9anbi12d 465 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)))
111, 5, 10cbvab 2281 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)}
12 nfcv 2299 . . . . . . 7 𝑦𝑧
13 cbvralcsf.1 . . . . . . 7 𝑦𝐴
1412, 13nfcsb 3068 . . . . . 6 𝑦𝑧 / 𝑥𝐴
1514nfcri 2293 . . . . 5 𝑦 𝑧𝑧 / 𝑥𝐴
16 cbvralcsf.3 . . . . . 6 𝑦𝜑
1716nfsb 1926 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1815, 17nfan 1545 . . . 4 𝑦(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
19 nfv 1508 . . . 4 𝑧(𝑦𝐵𝜓)
20 id 19 . . . . . 6 (𝑧 = 𝑦𝑧 = 𝑦)
21 csbeq1 3034 . . . . . . 7 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝑦 / 𝑥𝐴)
22 df-csb 3032 . . . . . . . 8 𝑦 / 𝑥𝐴 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
23 cbvralcsf.2 . . . . . . . . . . . 12 𝑥𝐵
2423nfcri 2293 . . . . . . . . . . 11 𝑥 𝑣𝐵
25 cbvralcsf.5 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝐵)
2625eleq2d 2227 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑣𝐴𝑣𝐵))
2724, 26sbie 1771 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐵)
28 sbsbc 2941 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴[𝑦 / 𝑥]𝑣𝐴)
2927, 28bitr3i 185 . . . . . . . . 9 (𝑣𝐵[𝑦 / 𝑥]𝑣𝐴)
3029abbi2i 2272 . . . . . . . 8 𝐵 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
3122, 30eqtr4i 2181 . . . . . . 7 𝑦 / 𝑥𝐴 = 𝐵
3221, 31eqtrdi 2206 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝐵)
3320, 32eleq12d 2228 . . . . 5 (𝑧 = 𝑦 → (𝑧𝑧 / 𝑥𝐴𝑦𝐵))
34 sbequ 1820 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
35 cbvralcsf.4 . . . . . . 7 𝑥𝜓
36 cbvralcsf.6 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
3735, 36sbie 1771 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
3834, 37bitrdi 195 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
3933, 38anbi12d 465 . . . 4 (𝑧 = 𝑦 → ((𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐵𝜓)))
4018, 19, 39cbvab 2281 . . 3 {𝑧 ∣ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐵𝜓)}
4111, 40eqtri 2178 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐵𝜓)}
42 df-rab 2444 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43 df-rab 2444 . 2 {𝑦𝐵𝜓} = {𝑦 ∣ (𝑦𝐵𝜓)}
4441, 42, 433eqtr4i 2188 1 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wnf 1440  [wsb 1742  wcel 2128  {cab 2143  wnfc 2286  {crab 2439  [wsbc 2937  csb 3031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-sbc 2938  df-csb 3032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator