ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralvw GIF version

Theorem cbvralvw 2733
Description: Version of cbvralv 2729 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvralvw (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvralvw
StepHypRef Expression
1 eleq1w 2257 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvralvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbvalvw 1934 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
5 df-ral 2480 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
6 df-ral 2480 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
74, 5, 63bitr4i 212 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-clel 2192  df-ral 2480
This theorem is referenced by:  cbvral2vw  2740  cc1  7332  zsupssdc  10328  prmpwdvds  12524  nninfdclemcl  12665  grpinvalem  13028  grpinva  13029  issubg4m  13323  isnsg2  13333  elnmz  13338  fsumdvdsmul  15227  2sqlem6  15361  2sqlem10  15366  bj-charfunbi  15457
  Copyright terms: Public domain W3C validator