![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvrmo | GIF version |
Description: Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvral.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvral.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvrex 2587 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
5 | 1, 2, 3 | cbvreu 2588 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
6 | 4, 5 | imbi12i 237 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) |
7 | rmo5 2582 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
8 | rmo5 2582 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 210 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1394 ∃wrex 2360 ∃!wreu 2361 ∃*wrmo 2362 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-reu 2366 df-rmo 2367 |
This theorem is referenced by: cbvrmov 2593 cbvdisj 3832 |
Copyright terms: Public domain | W3C validator |