ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmo GIF version

Theorem cbvrmo 2738
Description: Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
cbvral.1 𝑦𝜑
cbvral.2 𝑥𝜓
cbvral.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmo (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrmo
StepHypRef Expression
1 cbvral.1 . . . 4 𝑦𝜑
2 cbvral.2 . . . 4 𝑥𝜓
3 cbvral.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrex 2736 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
51, 2, 3cbvreu 2737 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
64, 5imbi12i 239 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑦𝐴 𝜓 → ∃!𝑦𝐴 𝜓))
7 rmo5 2727 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
8 rmo5 2727 . 2 (∃*𝑦𝐴 𝜓 ↔ (∃𝑦𝐴 𝜓 → ∃!𝑦𝐴 𝜓))
96, 7, 83bitr4i 212 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1484  wrex 2486  ∃!wreu 2487  ∃*wrmo 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-reu 2492  df-rmo 2493
This theorem is referenced by:  cbvrmov  2742  cbvdisj  4037
  Copyright terms: Public domain W3C validator