ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmo GIF version

Theorem cbvrmo 2700
Description: Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
cbvral.1 𝑦𝜑
cbvral.2 𝑥𝜓
cbvral.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmo (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrmo
StepHypRef Expression
1 cbvral.1 . . . 4 𝑦𝜑
2 cbvral.2 . . . 4 𝑥𝜓
3 cbvral.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrex 2698 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
51, 2, 3cbvreu 2699 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
64, 5imbi12i 239 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑦𝐴 𝜓 → ∃!𝑦𝐴 𝜓))
7 rmo5 2690 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
8 rmo5 2690 . 2 (∃*𝑦𝐴 𝜓 ↔ (∃𝑦𝐴 𝜓 → ∃!𝑦𝐴 𝜓))
96, 7, 83bitr4i 212 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1458  wrex 2454  ∃!wreu 2455  ∃*wrmo 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-reu 2460  df-rmo 2461
This theorem is referenced by:  cbvrmov  2704  cbvdisj  3985
  Copyright terms: Public domain W3C validator