| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrmo | GIF version | ||
| Description: Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvral.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvral.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvrex 2726 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| 5 | 1, 2, 3 | cbvreu 2727 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
| 6 | 4, 5 | imbi12i 239 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) |
| 7 | rmo5 2717 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
| 8 | rmo5 2717 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) | |
| 9 | 6, 7, 8 | 3bitr4i 212 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 ∃wrex 2476 ∃!wreu 2477 ∃*wrmo 2478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-rmo 2483 |
| This theorem is referenced by: cbvrmov 2732 cbvdisj 4020 |
| Copyright terms: Public domain | W3C validator |