ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcfac GIF version

Theorem pcfac 12519
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcfac ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝑀

Proof of Theorem pcfac
Dummy variables 𝑚 𝑛 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . . . . . 8 (𝑥 = 0 → (ℤ𝑥) = (ℤ‘0))
2 fveq2 5558 . . . . . . . . . 10 (𝑥 = 0 → (!‘𝑥) = (!‘0))
32oveq2d 5938 . . . . . . . . 9 (𝑥 = 0 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘0)))
4 fvoveq1 5945 . . . . . . . . . 10 (𝑥 = 0 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(0 / (𝑃𝑘))))
54sumeq2sdv 11535 . . . . . . . . 9 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
63, 5eqeq12d 2211 . . . . . . . 8 (𝑥 = 0 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘)))))
71, 6raleqbidv 2709 . . . . . . 7 (𝑥 = 0 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘)))))
87imbi2d 230 . . . . . 6 (𝑥 = 0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))))
9 fveq2 5558 . . . . . . . 8 (𝑥 = 𝑛 → (ℤ𝑥) = (ℤ𝑛))
10 fveq2 5558 . . . . . . . . . 10 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
1110oveq2d 5938 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑛)))
12 fvoveq1 5945 . . . . . . . . . 10 (𝑥 = 𝑛 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(𝑛 / (𝑃𝑘))))
1312sumeq2sdv 11535 . . . . . . . . 9 (𝑥 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))))
1411, 13eqeq12d 2211 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
159, 14raleqbidv 2709 . . . . . . 7 (𝑥 = 𝑛 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
1615imbi2d 230 . . . . . 6 (𝑥 = 𝑛 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))))))
17 fveq2 5558 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (ℤ𝑥) = (ℤ‘(𝑛 + 1)))
18 fveq2 5558 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1918oveq2d 5938 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘(𝑛 + 1))))
20 fvoveq1 5945 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘((𝑛 + 1) / (𝑃𝑘))))
2120sumeq2sdv 11535 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))
2219, 21eqeq12d 2211 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
2317, 22raleqbidv 2709 . . . . . . 7 (𝑥 = (𝑛 + 1) → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
2423imbi2d 230 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
25 fveq2 5558 . . . . . . . 8 (𝑥 = 𝑁 → (ℤ𝑥) = (ℤ𝑁))
26 fveq2 5558 . . . . . . . . . 10 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
2726oveq2d 5938 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑁)))
28 fvoveq1 5945 . . . . . . . . . 10 (𝑥 = 𝑁 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
2928sumeq2sdv 11535 . . . . . . . . 9 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))
3027, 29eqeq12d 2211 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
3125, 30raleqbidv 2709 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
3231imbi2d 230 . . . . . 6 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))))
33 1zzd 9353 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → 1 ∈ ℤ)
34 eluzelz 9610 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘0) → 𝑚 ∈ ℤ)
3534adantl 277 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → 𝑚 ∈ ℤ)
3633, 35fzfigd 10523 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (1...𝑚) ∈ Fin)
37 isumz 11554 . . . . . . . . . 10 (((1 ∈ ℤ ∧ (1...𝑚) ⊆ (ℤ‘1) ∧ ∀𝑗 ∈ (ℤ‘1)DECID 𝑗 ∈ (1...𝑚)) ∨ (1...𝑚) ∈ Fin) → Σ𝑘 ∈ (1...𝑚)0 = 0)
3837olcs 737 . . . . . . . . 9 ((1...𝑚) ∈ Fin → Σ𝑘 ∈ (1...𝑚)0 = 0)
3936, 38syl 14 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → Σ𝑘 ∈ (1...𝑚)0 = 0)
40 0nn0 9264 . . . . . . . . . 10 0 ∈ ℕ0
41 elfznn 10129 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ)
4241nnnn0d 9302 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ0)
43 nn0uz 9636 . . . . . . . . . . . 12 0 = (ℤ‘0)
4442, 43eleqtrdi 2289 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ (ℤ‘0))
4544adantl 277 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ (ℤ‘0))
46 simpll 527 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ)
47 pcfaclem 12518 . . . . . . . . . 10 ((0 ∈ ℕ0𝑘 ∈ (ℤ‘0) ∧ 𝑃 ∈ ℙ) → (⌊‘(0 / (𝑃𝑘))) = 0)
4840, 45, 46, 47mp3an2i 1353 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(0 / (𝑃𝑘))) = 0)
4948sumeq2dv 11533 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)0)
50 fac0 10820 . . . . . . . . . . 11 (!‘0) = 1
5150oveq2i 5933 . . . . . . . . . 10 (𝑃 pCnt (!‘0)) = (𝑃 pCnt 1)
52 pc1 12474 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
5351, 52eqtrid 2241 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 pCnt (!‘0)) = 0)
5453adantr 276 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (𝑃 pCnt (!‘0)) = 0)
5539, 49, 543eqtr4rd 2240 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
5655ralrimiva 2570 . . . . . 6 (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
57 nn0z 9346 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
5857adantr 276 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → 𝑛 ∈ ℤ)
59 uzid 9615 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
60 peano2uz 9657 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
6158, 59, 603syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (𝑛 + 1) ∈ (ℤ𝑛))
62 uzss 9622 . . . . . . . . . 10 ((𝑛 + 1) ∈ (ℤ𝑛) → (ℤ‘(𝑛 + 1)) ⊆ (ℤ𝑛))
63 ssralv 3247 . . . . . . . . . 10 ((ℤ‘(𝑛 + 1)) ⊆ (ℤ𝑛) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
6461, 62, 633syl 17 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
65 oveq1 5929 . . . . . . . . . . 11 ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))))
66 simpll 527 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
67 facp1 10822 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
6866, 67syl 14 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
6968oveq2d 5938 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (!‘(𝑛 + 1))) = (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))))
70 simplr 528 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ ℙ)
71 faccl 10827 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
72 nnz 9345 . . . . . . . . . . . . . . . 16 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℤ)
73 nnne0 9018 . . . . . . . . . . . . . . . 16 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
7472, 73jca 306 . . . . . . . . . . . . . . 15 ((!‘𝑛) ∈ ℕ → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0))
7566, 71, 743syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0))
76 nn0p1nn 9288 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
77 nnz 9345 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℤ)
78 nnne0 9018 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
7977, 78jca 306 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ℕ → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0))
8066, 76, 793syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0))
81 pcmul 12470 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0) ∧ ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0)) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))))
8270, 75, 80, 81syl3anc 1249 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))))
8369, 82eqtr2d 2230 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (𝑃 pCnt (!‘(𝑛 + 1))))
8466adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℕ0)
8584nn0zd 9446 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℤ)
86 prmnn 12278 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8786ad2antlr 489 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ ℕ)
88 nnexpcl 10644 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
8987, 42, 88syl2an 289 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑃𝑘) ∈ ℕ)
90 fldivp1 12517 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0))
9185, 89, 90syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0))
92 elfzuz 10096 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ (ℤ‘1))
9366, 76syl 14 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ)
9470, 93pccld 12469 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℕ0)
9594nn0zd 9446 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℤ)
96 elfz5 10092 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (ℤ‘1) ∧ (𝑃 pCnt (𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1))))
9792, 95, 96syl2anr 290 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1))))
98 simpllr 534 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ)
9984, 76syl 14 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℕ)
10099nnzd 9447 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℤ)
10142adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ0)
102 pcdvdsb 12489 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑘) ∥ (𝑛 + 1)))
10398, 100, 101, 102syl3anc 1249 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑘) ∥ (𝑛 + 1)))
10497, 103bitr2d 189 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑃𝑘) ∥ (𝑛 + 1) ↔ 𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1)))))
105104ifbid 3582 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
10691, 105eqtrd 2229 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
107106sumeq2dv 11533 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
108 1zzd 9353 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 1 ∈ ℤ)
109 eluzelz 9610 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → 𝑚 ∈ ℤ)
110109adantl 277 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ ℤ)
111108, 110fzfigd 10523 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (1...𝑚) ∈ Fin)
112 znq 9698 . . . . . . . . . . . . . . . . . 18 (((𝑛 + 1) ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → ((𝑛 + 1) / (𝑃𝑘)) ∈ ℚ)
113100, 89, 112syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑛 + 1) / (𝑃𝑘)) ∈ ℚ)
114113flqcld 10367 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℤ)
115114zcnd 9449 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℂ)
116 znq 9698 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → (𝑛 / (𝑃𝑘)) ∈ ℚ)
11785, 89, 116syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 / (𝑃𝑘)) ∈ ℚ)
118117flqcld 10367 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃𝑘))) ∈ ℤ)
119118zcnd 9449 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃𝑘))) ∈ ℂ)
120111, 115, 119fsumsub 11617 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
12194nn0red 9303 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
12266nn0red 9303 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℝ)
123 peano2re 8162 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
124122, 123syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℝ)
125110zred 9448 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ ℝ)
12693nnzd 9447 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℤ)
127 zdcle 9402 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 pCnt (𝑛 + 1)) ∈ ℤ ∧ (𝑛 + 1) ∈ ℤ) → DECID (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1))
12895, 126, 127syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → DECID (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1))
129 zletric 9370 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 pCnt (𝑛 + 1)) ∈ ℤ ∧ (𝑛 + 1) ∈ ℤ) → ((𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) ∨ (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
13095, 126, 129syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) ∨ (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
131130ord 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
13293nnnn0d 9302 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
133 pcdvdsb 12489 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ0) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1)))
13470, 126, 132, 133syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1)))
13587, 132nnexpcld 10787 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℕ)
136135nnzd 9447 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℤ)
137 dvdsle 12009 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃↑(𝑛 + 1)) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1)))
138136, 93, 137syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1)))
139135nnred 9003 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℝ)
140139, 124lenltd 8144 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1) ↔ ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
141138, 140sylibd 149 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
142134, 141sylbid 150 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
143131, 142syld 45 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
144 prmuz2 12299 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
145144ad2antlr 489 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ (ℤ‘2))
146 bernneq3 10754 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ (ℤ‘2) ∧ (𝑛 + 1) ∈ ℕ0) → (𝑛 + 1) < (𝑃↑(𝑛 + 1)))
147145, 132, 146syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) < (𝑃↑(𝑛 + 1)))
148 condc 854 . . . . . . . . . . . . . . . . . . . 20 (DECID (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → ((¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))) → ((𝑛 + 1) < (𝑃↑(𝑛 + 1)) → (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1))))
149128, 143, 147, 148syl3c 63 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1))
150 eluzle 9613 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (𝑛 + 1) ≤ 𝑚)
151150adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ≤ 𝑚)
152121, 124, 125, 149, 151letrd 8150 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚)
153 eluz 9614 . . . . . . . . . . . . . . . . . . 19 (((𝑃 pCnt (𝑛 + 1)) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚))
15495, 110, 153syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚))
155152, 154mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))))
156 fzss2 10139 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚))
157155, 156syl 14 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚))
158 elfzelz 10100 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑚) → 𝑗 ∈ ℤ)
159158adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑗 ∈ (1...𝑚)) → 𝑗 ∈ ℤ)
160 1zzd 9353 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑗 ∈ (1...𝑚)) → 1 ∈ ℤ)
16195adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑗 ∈ (1...𝑚)) → (𝑃 pCnt (𝑛 + 1)) ∈ ℤ)
162 fzdcel 10115 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℤ ∧ 1 ∈ ℤ ∧ (𝑃 pCnt (𝑛 + 1)) ∈ ℤ) → DECID 𝑗 ∈ (1...(𝑃 pCnt (𝑛 + 1))))
163159, 160, 161, 162syl3anc 1249 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑗 ∈ (1...𝑚)) → DECID 𝑗 ∈ (1...(𝑃 pCnt (𝑛 + 1))))
164163ralrimiva 2570 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ∀𝑗 ∈ (1...𝑚)DECID 𝑗 ∈ (1...(𝑃 pCnt (𝑛 + 1))))
165 sumhashdc 12516 . . . . . . . . . . . . . . . 16 (((1...𝑚) ∈ Fin ∧ (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚) ∧ ∀𝑗 ∈ (1...𝑚)DECID 𝑗 ∈ (1...(𝑃 pCnt (𝑛 + 1)))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (♯‘(1...(𝑃 pCnt (𝑛 + 1)))))
166111, 157, 164, 165syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (♯‘(1...(𝑃 pCnt (𝑛 + 1)))))
167 hashfz1 10875 . . . . . . . . . . . . . . . 16 ((𝑃 pCnt (𝑛 + 1)) ∈ ℕ0 → (♯‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1)))
16894, 167syl 14 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (♯‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1)))
169166, 168eqtrd 2229 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (𝑃 pCnt (𝑛 + 1)))
170107, 120, 1693eqtr3d 2237 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) = (𝑃 pCnt (𝑛 + 1)))
171111, 115fsumcl 11565 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℂ)
172111, 119fsumcl 11565 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) ∈ ℂ)
17394nn0cnd 9304 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℂ)
174171, 172, 173subaddd 8355 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) = (𝑃 pCnt (𝑛 + 1)) ↔ (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
175170, 174mpbid 147 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))
17683, 175eqeq12d 2211 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
17765, 176imbitrid 154 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
178177ralimdva 2564 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
17964, 178syld 45 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
180179ex 115 . . . . . . 7 (𝑛 ∈ ℕ0 → (𝑃 ∈ ℙ → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
181180a2d 26 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) → (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
1828, 16, 24, 32, 56, 181nn0ind 9440 . . . . 5 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
183182imp 124 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ) → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))
184 oveq2 5930 . . . . . . 7 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
185184sumeq1d 11531 . . . . . 6 (𝑚 = 𝑀 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
186185eqeq2d 2208 . . . . 5 (𝑚 = 𝑀 → ((𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
187186rspcv 2864 . . . 4 (𝑀 ∈ (ℤ𝑁) → (∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
188183, 187syl5 32 . . 3 (𝑀 ∈ (ℤ𝑁) → ((𝑁 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
1891883impib 1203 . 2 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
1901893com12 1209 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wne 2367  wral 2475  wss 3157  ifcif 3561   class class class wbr 4033  cfv 5258  (class class class)co 5922  Fincfn 6799  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  cq 9693  ...cfz 10083  cfl 10358  cexp 10630  !cfa 10817  chash 10867  Σcsu 11518  cdvds 11952  cprime 12275   pCnt cpc 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-dvds 11953  df-gcd 12121  df-prm 12276  df-pc 12454
This theorem is referenced by:  pcbc  12520
  Copyright terms: Public domain W3C validator