ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1lgs GIF version

Theorem m1lgs 15192
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 9349 . . . . . . . . 9 -1 ∈ ℤ
2 oddprm 12397 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32nnnn0d 9293 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ0)
4 zexpcl 10625 . . . . . . . . 9 ((-1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
51, 3, 4sylancr 414 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
65peano2zd 9442 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
7 eldifi 3281 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 12248 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 14 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
106, 9zmodcld 10416 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
1110nn0cnd 9295 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
12 1cnd 8035 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
1311, 12, 12subaddd 8348 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
14 2z 9345 . . . . . . . . 9 2 ∈ ℤ
15 zq 9691 . . . . . . . . 9 (2 ∈ ℤ → 2 ∈ ℚ)
1614, 15ax-mp 5 . . . . . . . 8 2 ∈ ℚ
1716a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℚ)
18 prmz 12249 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
19 zq 9691 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
207, 18, 193syl 17 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℚ)
21 0le2 9072 . . . . . . . 8 0 ≤ 2
2221a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 0 ≤ 2)
23 oddprmgt2 12272 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
24 modqid 10420 . . . . . . 7 (((2 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
2517, 20, 22, 23, 24syl22anc 1250 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = 2)
26 df-2 9041 . . . . . 6 2 = (1 + 1)
2725, 26eqtrdi 2242 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = (1 + 1))
2827eqeq1d 2202 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
29 2nn 9143 . . . . . . . 8 2 ∈ ℕ
302nnzd 9438 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
31 dvdsdc 11941 . . . . . . . 8 ((2 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → DECID 2 ∥ ((𝑃 − 1) / 2))
3229, 30, 31sylancr 414 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → DECID 2 ∥ ((𝑃 − 1) / 2))
33 eldifsni 3747 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
3433neneqd 2385 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
35 prmuz2 12269 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
367, 35syl 14 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
37 2prm 12265 . . . . . . . . . . . 12 2 ∈ ℙ
38 dvdsprm 12275 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3936, 37, 38sylancl 413 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
4034, 39mtbird 674 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 ∥ 2)
4140adantr 276 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ 2)
42 1cnd 8035 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → 1 ∈ ℂ)
432adantr 276 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℕ)
44 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 2 ∥ ((𝑃 − 1) / 2))
45 oexpneg 12018 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4642, 43, 44, 45syl3anc 1249 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4743nnzd 9438 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℤ)
48 1exp 10639 . . . . . . . . . . . . . . . . 17 (((𝑃 − 1) / 2) ∈ ℤ → (1↑((𝑃 − 1) / 2)) = 1)
4947, 48syl 14 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (1↑((𝑃 − 1) / 2)) = 1)
5049negeqd 8214 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → -(1↑((𝑃 − 1) / 2)) = -1)
5146, 50eqtrd 2226 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -1)
5251oveq1d 5933 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (-1 + 1))
53 ax-1cn 7965 . . . . . . . . . . . . . 14 1 ∈ ℂ
54 neg1cn 9087 . . . . . . . . . . . . . 14 -1 ∈ ℂ
55 1pneg1e0 9093 . . . . . . . . . . . . . 14 (1 + -1) = 0
5653, 54, 55addcomli 8164 . . . . . . . . . . . . 13 (-1 + 1) = 0
5752, 56eqtrdi 2242 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = 0)
5857oveq2d 5934 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = (2 − 0))
59 2cn 9053 . . . . . . . . . . . 12 2 ∈ ℂ
6059subid1i 8291 . . . . . . . . . . 11 (2 − 0) = 2
6158, 60eqtrdi 2242 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = 2)
6261breq2d 4041 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) ↔ 𝑃 ∥ 2))
6341, 62mtbird 674 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)))
6463ex 115 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
65 condc 854 . . . . . . 7 (DECID 2 ∥ ((𝑃 − 1) / 2) → ((¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2))))
6632, 64, 65sylc 62 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2)))
6714a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℤ)
68 moddvds 11942 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
699, 67, 6, 68syl3anc 1249 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
70 4z 9347 . . . . . . . . 9 4 ∈ ℤ
71 4ne0 9080 . . . . . . . . 9 4 ≠ 0
72 nnm1nn0 9281 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
739, 72syl 14 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℕ0)
7473nn0zd 9437 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℤ)
75 dvdsval2 11933 . . . . . . . . 9 ((4 ∈ ℤ ∧ 4 ≠ 0 ∧ (𝑃 − 1) ∈ ℤ) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7670, 71, 74, 75mp3an12i 1352 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7773nn0cnd 9295 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℂ)
7859a1i 9 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℂ)
7929a1i 9 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℕ)
8079nnap0d 9028 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 # 0)
8177, 78, 78, 80, 80divdivap1d 8841 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / (2 · 2)))
82 2t2e4 9136 . . . . . . . . . . 11 (2 · 2) = 4
8382oveq2i 5929 . . . . . . . . . 10 ((𝑃 − 1) / (2 · 2)) = ((𝑃 − 1) / 4)
8481, 83eqtrdi 2242 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / 4))
8584eleq1d 2262 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((((𝑃 − 1) / 2) / 2) ∈ ℤ ↔ ((𝑃 − 1) / 4) ∈ ℤ))
8676, 85bitr4d 191 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
87 2ne0 9074 . . . . . . . 8 2 ≠ 0
88 dvdsval2 11933 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8914, 87, 30, 88mp3an12i 1352 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
9086, 89bitr4d 191 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ 2 ∥ ((𝑃 − 1) / 2)))
9166, 69, 903imtr4d 203 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) → 4 ∥ (𝑃 − 1)))
9254a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ∈ ℂ)
93 neg1ap0 9091 . . . . . . . . . . . 12 -1 # 0
9493a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 # 0)
9514a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 ∈ ℤ)
9686biimpa 296 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (((𝑃 − 1) / 2) / 2) ∈ ℤ)
97 expmulzap 10656 . . . . . . . . . . 11 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧ (((𝑃 − 1) / 2) / 2) ∈ ℤ)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
9892, 94, 95, 96, 97syl22anc 1250 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
992nncnd 8996 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℂ)
10099, 78, 80divcanap2d 8811 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
101100adantr 276 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
102101oveq2d 5934 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = (-1↑((𝑃 − 1) / 2)))
103 neg1sqe1 10705 . . . . . . . . . . . 12 (-1↑2) = 1
104103oveq1i 5928 . . . . . . . . . . 11 ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = (1↑(((𝑃 − 1) / 2) / 2))
105 1exp 10639 . . . . . . . . . . . 12 ((((𝑃 − 1) / 2) / 2) ∈ ℤ → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
10696, 105syl 14 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
107104, 106eqtrid 2238 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = 1)
10898, 102, 1073eqtr3d 2234 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑((𝑃 − 1) / 2)) = 1)
109108oveq1d 5933 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (1 + 1))
11026, 109eqtr4id 2245 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 = ((-1↑((𝑃 − 1) / 2)) + 1))
111110oveq1d 5933 . . . . . 6 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
112111ex 115 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
11391, 112impbid 129 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 4 ∥ (𝑃 − 1)))
11413, 28, 1133bitr2d 216 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ 4 ∥ (𝑃 − 1)))
115 lgsval3 15134 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
1161, 115mpan 424 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
117116eqeq1d 2202 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1))
118 4nn 9145 . . . . 5 4 ∈ ℕ
119118a1i 9 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 4 ∈ ℕ)
1207, 18syl 14 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
121 1zzd 9344 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℤ)
122 moddvds 11942 . . . 4 ((4 ∈ ℕ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
123119, 120, 121, 122syl3anc 1249 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
124114, 117, 1233bitr4d 220 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = (1 mod 4)))
125 1z 9343 . . . . 5 1 ∈ ℤ
126 zq 9691 . . . . 5 (1 ∈ ℤ → 1 ∈ ℚ)
127125, 126ax-mp 5 . . . 4 1 ∈ ℚ
128 zq 9691 . . . . 5 (4 ∈ ℤ → 4 ∈ ℚ)
12970, 128ax-mp 5 . . . 4 4 ∈ ℚ
130 0le1 8500 . . . 4 0 ≤ 1
131 1lt4 9156 . . . 4 1 < 4
132 modqid 10420 . . . 4 (((1 ∈ ℚ ∧ 4 ∈ ℚ) ∧ (0 ≤ 1 ∧ 1 < 4)) → (1 mod 4) = 1)
133127, 129, 130, 131, 132mp4an 427 . . 3 (1 mod 4) = 1
134133eqeq2i 2204 . 2 ((𝑃 mod 4) = (1 mod 4) ↔ (𝑃 mod 4) = 1)
135124, 134bitrdi 196 1 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  cdif 3150  {csn 3618   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190  -cneg 8191   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  4c4 9035  0cn0 9240  cz 9317  cuz 9592  cq 9684   mod cmo 10393  cexp 10609  cdvds 11930  cprime 12245   /L clgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator