ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1lgs GIF version

Theorem m1lgs 15647
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 9434 . . . . . . . . 9 -1 ∈ ℤ
2 oddprm 12667 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32nnnn0d 9378 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ0)
4 zexpcl 10731 . . . . . . . . 9 ((-1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
51, 3, 4sylancr 414 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
65peano2zd 9528 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
7 eldifi 3299 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 12517 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 14 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
106, 9zmodcld 10522 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
1110nn0cnd 9380 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
12 1cnd 8118 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
1311, 12, 12subaddd 8431 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
14 2z 9430 . . . . . . . . 9 2 ∈ ℤ
15 zq 9777 . . . . . . . . 9 (2 ∈ ℤ → 2 ∈ ℚ)
1614, 15ax-mp 5 . . . . . . . 8 2 ∈ ℚ
1716a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℚ)
18 prmz 12518 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
19 zq 9777 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
207, 18, 193syl 17 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℚ)
21 0le2 9156 . . . . . . . 8 0 ≤ 2
2221a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 0 ≤ 2)
23 oddprmgt2 12541 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
24 modqid 10526 . . . . . . 7 (((2 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
2517, 20, 22, 23, 24syl22anc 1251 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = 2)
26 df-2 9125 . . . . . 6 2 = (1 + 1)
2725, 26eqtrdi 2255 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = (1 + 1))
2827eqeq1d 2215 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
29 2nn 9228 . . . . . . . 8 2 ∈ ℕ
302nnzd 9524 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
31 dvdsdc 12194 . . . . . . . 8 ((2 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → DECID 2 ∥ ((𝑃 − 1) / 2))
3229, 30, 31sylancr 414 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → DECID 2 ∥ ((𝑃 − 1) / 2))
33 eldifsni 3768 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
3433neneqd 2398 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
35 prmuz2 12538 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
367, 35syl 14 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
37 2prm 12534 . . . . . . . . . . . 12 2 ∈ ℙ
38 dvdsprm 12544 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3936, 37, 38sylancl 413 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
4034, 39mtbird 675 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 ∥ 2)
4140adantr 276 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ 2)
42 1cnd 8118 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → 1 ∈ ℂ)
432adantr 276 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℕ)
44 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 2 ∥ ((𝑃 − 1) / 2))
45 oexpneg 12273 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4642, 43, 44, 45syl3anc 1250 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4743nnzd 9524 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℤ)
48 1exp 10745 . . . . . . . . . . . . . . . . 17 (((𝑃 − 1) / 2) ∈ ℤ → (1↑((𝑃 − 1) / 2)) = 1)
4947, 48syl 14 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (1↑((𝑃 − 1) / 2)) = 1)
5049negeqd 8297 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → -(1↑((𝑃 − 1) / 2)) = -1)
5146, 50eqtrd 2239 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -1)
5251oveq1d 5977 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (-1 + 1))
53 ax-1cn 8048 . . . . . . . . . . . . . 14 1 ∈ ℂ
54 neg1cn 9171 . . . . . . . . . . . . . 14 -1 ∈ ℂ
55 1pneg1e0 9177 . . . . . . . . . . . . . 14 (1 + -1) = 0
5653, 54, 55addcomli 8247 . . . . . . . . . . . . 13 (-1 + 1) = 0
5752, 56eqtrdi 2255 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = 0)
5857oveq2d 5978 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = (2 − 0))
59 2cn 9137 . . . . . . . . . . . 12 2 ∈ ℂ
6059subid1i 8374 . . . . . . . . . . 11 (2 − 0) = 2
6158, 60eqtrdi 2255 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = 2)
6261breq2d 4066 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) ↔ 𝑃 ∥ 2))
6341, 62mtbird 675 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)))
6463ex 115 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
65 condc 855 . . . . . . 7 (DECID 2 ∥ ((𝑃 − 1) / 2) → ((¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2))))
6632, 64, 65sylc 62 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2)))
6714a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℤ)
68 moddvds 12195 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
699, 67, 6, 68syl3anc 1250 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
70 4z 9432 . . . . . . . . 9 4 ∈ ℤ
71 4ne0 9164 . . . . . . . . 9 4 ≠ 0
72 nnm1nn0 9366 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
739, 72syl 14 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℕ0)
7473nn0zd 9523 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℤ)
75 dvdsval2 12186 . . . . . . . . 9 ((4 ∈ ℤ ∧ 4 ≠ 0 ∧ (𝑃 − 1) ∈ ℤ) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7670, 71, 74, 75mp3an12i 1354 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7773nn0cnd 9380 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℂ)
7859a1i 9 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℂ)
7929a1i 9 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℕ)
8079nnap0d 9112 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 # 0)
8177, 78, 78, 80, 80divdivap1d 8925 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / (2 · 2)))
82 2t2e4 9221 . . . . . . . . . . 11 (2 · 2) = 4
8382oveq2i 5973 . . . . . . . . . 10 ((𝑃 − 1) / (2 · 2)) = ((𝑃 − 1) / 4)
8481, 83eqtrdi 2255 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / 4))
8584eleq1d 2275 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((((𝑃 − 1) / 2) / 2) ∈ ℤ ↔ ((𝑃 − 1) / 4) ∈ ℤ))
8676, 85bitr4d 191 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
87 2ne0 9158 . . . . . . . 8 2 ≠ 0
88 dvdsval2 12186 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8914, 87, 30, 88mp3an12i 1354 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
9086, 89bitr4d 191 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ 2 ∥ ((𝑃 − 1) / 2)))
9166, 69, 903imtr4d 203 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) → 4 ∥ (𝑃 − 1)))
9254a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ∈ ℂ)
93 neg1ap0 9175 . . . . . . . . . . . 12 -1 # 0
9493a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 # 0)
9514a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 ∈ ℤ)
9686biimpa 296 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (((𝑃 − 1) / 2) / 2) ∈ ℤ)
97 expmulzap 10762 . . . . . . . . . . 11 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧ (((𝑃 − 1) / 2) / 2) ∈ ℤ)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
9892, 94, 95, 96, 97syl22anc 1251 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
992nncnd 9080 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℂ)
10099, 78, 80divcanap2d 8895 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
101100adantr 276 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
102101oveq2d 5978 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = (-1↑((𝑃 − 1) / 2)))
103 neg1sqe1 10811 . . . . . . . . . . . 12 (-1↑2) = 1
104103oveq1i 5972 . . . . . . . . . . 11 ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = (1↑(((𝑃 − 1) / 2) / 2))
105 1exp 10745 . . . . . . . . . . . 12 ((((𝑃 − 1) / 2) / 2) ∈ ℤ → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
10696, 105syl 14 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
107104, 106eqtrid 2251 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = 1)
10898, 102, 1073eqtr3d 2247 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑((𝑃 − 1) / 2)) = 1)
109108oveq1d 5977 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (1 + 1))
11026, 109eqtr4id 2258 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 = ((-1↑((𝑃 − 1) / 2)) + 1))
111110oveq1d 5977 . . . . . 6 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
112111ex 115 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
11391, 112impbid 129 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 4 ∥ (𝑃 − 1)))
11413, 28, 1133bitr2d 216 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ 4 ∥ (𝑃 − 1)))
115 lgsval3 15580 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
1161, 115mpan 424 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
117116eqeq1d 2215 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1))
118 4nn 9230 . . . . 5 4 ∈ ℕ
119118a1i 9 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 4 ∈ ℕ)
1207, 18syl 14 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
121 1zzd 9429 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℤ)
122 moddvds 12195 . . . 4 ((4 ∈ ℕ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
123119, 120, 121, 122syl3anc 1250 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
124114, 117, 1233bitr4d 220 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = (1 mod 4)))
125 1z 9428 . . . . 5 1 ∈ ℤ
126 zq 9777 . . . . 5 (1 ∈ ℤ → 1 ∈ ℚ)
127125, 126ax-mp 5 . . . 4 1 ∈ ℚ
128 zq 9777 . . . . 5 (4 ∈ ℤ → 4 ∈ ℚ)
12970, 128ax-mp 5 . . . 4 4 ∈ ℚ
130 0le1 8584 . . . 4 0 ≤ 1
131 1lt4 9241 . . . 4 1 < 4
132 modqid 10526 . . . 4 (((1 ∈ ℚ ∧ 4 ∈ ℚ) ∧ (0 ≤ 1 ∧ 1 < 4)) → (1 mod 4) = 1)
133127, 129, 130, 131, 132mp4an 427 . . 3 (1 mod 4) = 1
134133eqeq2i 2217 . 2 ((𝑃 mod 4) = (1 mod 4) ↔ (𝑃 mod 4) = 1)
135124, 134bitrdi 196 1 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377  cdif 3167  {csn 3638   class class class wbr 4054  cfv 5285  (class class class)co 5962  cc 7953  0cc0 7955  1c1 7956   + caddc 7958   · cmul 7960   < clt 8137  cle 8138  cmin 8273  -cneg 8274   # cap 8684   / cdiv 8775  cn 9066  2c2 9117  4c4 9119  0cn0 9325  cz 9402  cuz 9678  cq 9770   mod cmo 10499  cexp 10715  cdvds 12183  cprime 12514   /L clgs 15559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-2o 6521  df-oadd 6524  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-ihash 10953  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675  df-proddc 11947  df-dvds 12184  df-gcd 12360  df-prm 12515  df-phi 12618  df-pc 12693  df-lgs 15560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator