ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1lgs GIF version

Theorem m1lgs 14835
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 9302 . . . . . . . . 9 -1 ∈ ℤ
2 oddprm 12276 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32nnnn0d 9246 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ0)
4 zexpcl 10552 . . . . . . . . 9 ((-1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
51, 3, 4sylancr 414 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (-1↑((𝑃 − 1) / 2)) ∈ ℤ)
65peano2zd 9395 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
7 eldifi 3271 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 12127 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
97, 8syl 14 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
106, 9zmodcld 10362 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℕ0)
1110nn0cnd 9248 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ ℂ)
12 1cnd 7990 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
1311, 12, 12subaddd 8303 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
14 2z 9298 . . . . . . . . 9 2 ∈ ℤ
15 zq 9643 . . . . . . . . 9 (2 ∈ ℤ → 2 ∈ ℚ)
1614, 15ax-mp 5 . . . . . . . 8 2 ∈ ℚ
1716a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℚ)
18 prmz 12128 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
19 zq 9643 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
207, 18, 193syl 17 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℚ)
21 0le2 9026 . . . . . . . 8 0 ≤ 2
2221a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 0 ≤ 2)
23 oddprmgt2 12151 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
24 modqid 10366 . . . . . . 7 (((2 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
2517, 20, 22, 23, 24syl22anc 1249 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = 2)
26 df-2 8995 . . . . . 6 2 = (1 + 1)
2725, 26eqtrdi 2237 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 mod 𝑃) = (1 + 1))
2827eqeq1d 2197 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ (1 + 1) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
29 2nn 9097 . . . . . . . 8 2 ∈ ℕ
302nnzd 9391 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ)
31 dvdsdc 11822 . . . . . . . 8 ((2 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℤ) → DECID 2 ∥ ((𝑃 − 1) / 2))
3229, 30, 31sylancr 414 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → DECID 2 ∥ ((𝑃 − 1) / 2))
33 eldifsni 3735 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
3433neneqd 2380 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
35 prmuz2 12148 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
367, 35syl 14 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
37 2prm 12144 . . . . . . . . . . . 12 2 ∈ ℙ
38 dvdsprm 12154 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
3936, 37, 38sylancl 413 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
4034, 39mtbird 674 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 ∥ 2)
4140adantr 276 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ 2)
42 1cnd 7990 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → 1 ∈ ℂ)
432adantr 276 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℕ)
44 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 2 ∥ ((𝑃 − 1) / 2))
45 oexpneg 11899 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4642, 43, 44, 45syl3anc 1248 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -(1↑((𝑃 − 1) / 2)))
4743nnzd 9391 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((𝑃 − 1) / 2) ∈ ℤ)
48 1exp 10566 . . . . . . . . . . . . . . . . 17 (((𝑃 − 1) / 2) ∈ ℤ → (1↑((𝑃 − 1) / 2)) = 1)
4947, 48syl 14 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (1↑((𝑃 − 1) / 2)) = 1)
5049negeqd 8169 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → -(1↑((𝑃 − 1) / 2)) = -1)
5146, 50eqtrd 2221 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (-1↑((𝑃 − 1) / 2)) = -1)
5251oveq1d 5905 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (-1 + 1))
53 ax-1cn 7921 . . . . . . . . . . . . . 14 1 ∈ ℂ
54 neg1cn 9041 . . . . . . . . . . . . . 14 -1 ∈ ℂ
55 1pneg1e0 9047 . . . . . . . . . . . . . 14 (1 + -1) = 0
5653, 54, 55addcomli 8119 . . . . . . . . . . . . 13 (-1 + 1) = 0
5752, 56eqtrdi 2237 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ((-1↑((𝑃 − 1) / 2)) + 1) = 0)
5857oveq2d 5906 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = (2 − 0))
59 2cn 9007 . . . . . . . . . . . 12 2 ∈ ℂ
6059subid1i 8246 . . . . . . . . . . 11 (2 − 0) = 2
6158, 60eqtrdi 2237 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) = 2)
6261breq2d 4029 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) ↔ 𝑃 ∥ 2))
6341, 62mtbird 674 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 2 ∥ ((𝑃 − 1) / 2)) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)))
6463ex 115 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
65 condc 854 . . . . . . 7 (DECID 2 ∥ ((𝑃 − 1) / 2) → ((¬ 2 ∥ ((𝑃 − 1) / 2) → ¬ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2))))
6632, 64, 65sylc 62 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1)) → 2 ∥ ((𝑃 − 1) / 2)))
6714a1i 9 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℤ)
68 moddvds 11823 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ ((-1↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
699, 67, 6, 68syl3anc 1248 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 𝑃 ∥ (2 − ((-1↑((𝑃 − 1) / 2)) + 1))))
70 4z 9300 . . . . . . . . 9 4 ∈ ℤ
71 4ne0 9034 . . . . . . . . 9 4 ≠ 0
72 nnm1nn0 9234 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
739, 72syl 14 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℕ0)
7473nn0zd 9390 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℤ)
75 dvdsval2 11814 . . . . . . . . 9 ((4 ∈ ℤ ∧ 4 ≠ 0 ∧ (𝑃 − 1) ∈ ℤ) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7670, 71, 74, 75mp3an12i 1351 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ ((𝑃 − 1) / 4) ∈ ℤ))
7773nn0cnd 9248 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 − 1) ∈ ℂ)
7859a1i 9 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℂ)
7929a1i 9 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 2 ∈ ℕ)
8079nnap0d 8982 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 2 # 0)
8177, 78, 78, 80, 80divdivap1d 8796 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / (2 · 2)))
82 2t2e4 9090 . . . . . . . . . . 11 (2 · 2) = 4
8382oveq2i 5901 . . . . . . . . . 10 ((𝑃 − 1) / (2 · 2)) = ((𝑃 − 1) / 4)
8481, 83eqtrdi 2237 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃 − 1) / 2) / 2) = ((𝑃 − 1) / 4))
8584eleq1d 2257 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((((𝑃 − 1) / 2) / 2) ∈ ℤ ↔ ((𝑃 − 1) / 4) ∈ ℤ))
8676, 85bitr4d 191 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
87 2ne0 9028 . . . . . . . 8 2 ≠ 0
88 dvdsval2 11814 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ ((𝑃 − 1) / 2) ∈ ℤ) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
8914, 87, 30, 88mp3an12i 1351 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ ((𝑃 − 1) / 2) ↔ (((𝑃 − 1) / 2) / 2) ∈ ℤ))
9086, 89bitr4d 191 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) ↔ 2 ∥ ((𝑃 − 1) / 2)))
9166, 69, 903imtr4d 203 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) → 4 ∥ (𝑃 − 1)))
9254a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 ∈ ℂ)
93 neg1ap0 9045 . . . . . . . . . . . 12 -1 # 0
9493a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → -1 # 0)
9514a1i 9 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 ∈ ℤ)
9686biimpa 296 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (((𝑃 − 1) / 2) / 2) ∈ ℤ)
97 expmulzap 10583 . . . . . . . . . . 11 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧ (((𝑃 − 1) / 2) / 2) ∈ ℤ)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
9892, 94, 95, 96, 97syl22anc 1249 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = ((-1↑2)↑(((𝑃 − 1) / 2) / 2)))
992nncnd 8950 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℂ)
10099, 78, 80divcanap2d 8766 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
101100adantr 276 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 · (((𝑃 − 1) / 2) / 2)) = ((𝑃 − 1) / 2))
102101oveq2d 5906 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑(2 · (((𝑃 − 1) / 2) / 2))) = (-1↑((𝑃 − 1) / 2)))
103 neg1sqe1 10632 . . . . . . . . . . . 12 (-1↑2) = 1
104103oveq1i 5900 . . . . . . . . . . 11 ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = (1↑(((𝑃 − 1) / 2) / 2))
105 1exp 10566 . . . . . . . . . . . 12 ((((𝑃 − 1) / 2) / 2) ∈ ℤ → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
10696, 105syl 14 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (1↑(((𝑃 − 1) / 2) / 2)) = 1)
107104, 106eqtrid 2233 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑2)↑(((𝑃 − 1) / 2) / 2)) = 1)
10898, 102, 1073eqtr3d 2229 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (-1↑((𝑃 − 1) / 2)) = 1)
109108oveq1d 5905 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → ((-1↑((𝑃 − 1) / 2)) + 1) = (1 + 1))
11026, 109eqtr4id 2240 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → 2 = ((-1↑((𝑃 − 1) / 2)) + 1))
111110oveq1d 5905 . . . . . 6 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 4 ∥ (𝑃 − 1)) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃))
112111ex 115 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (4 ∥ (𝑃 − 1) → (2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃)))
11391, 112impbid 129 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → ((2 mod 𝑃) = (((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ↔ 4 ∥ (𝑃 − 1)))
11413, 28, 1133bitr2d 216 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1 ↔ 4 ∥ (𝑃 − 1)))
115 lgsval3 14802 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
1161, 115mpan 424 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (-1 /L 𝑃) = ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))
117116eqeq1d 2197 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ ((((-1↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = 1))
118 4nn 9099 . . . . 5 4 ∈ ℕ
119118a1i 9 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 4 ∈ ℕ)
1207, 18syl 14 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
121 1zzd 9297 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → 1 ∈ ℤ)
122 moddvds 11823 . . . 4 ((4 ∈ ℕ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
123119, 120, 121, 122syl3anc 1248 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 mod 4) = (1 mod 4) ↔ 4 ∥ (𝑃 − 1)))
124114, 117, 1233bitr4d 220 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = (1 mod 4)))
125 1z 9296 . . . . 5 1 ∈ ℤ
126 zq 9643 . . . . 5 (1 ∈ ℤ → 1 ∈ ℚ)
127125, 126ax-mp 5 . . . 4 1 ∈ ℚ
128 zq 9643 . . . . 5 (4 ∈ ℤ → 4 ∈ ℚ)
12970, 128ax-mp 5 . . . 4 4 ∈ ℚ
130 0le1 8455 . . . 4 0 ≤ 1
131 1lt4 9110 . . . 4 1 < 4
132 modqid 10366 . . . 4 (((1 ∈ ℚ ∧ 4 ∈ ℚ) ∧ (0 ≤ 1 ∧ 1 < 4)) → (1 mod 4) = 1)
133127, 129, 130, 131, 132mp4an 427 . . 3 (1 mod 4) = 1
134133eqeq2i 2199 . 2 ((𝑃 mod 4) = (1 mod 4) ↔ (𝑃 mod 4) = 1)
135124, 134bitrdi 196 1 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1363  wcel 2159  wne 2359  cdif 3140  {csn 3606   class class class wbr 4017  cfv 5230  (class class class)co 5890  cc 7826  0cc0 7828  1c1 7829   + caddc 7831   · cmul 7833   < clt 8009  cle 8010  cmin 8145  -cneg 8146   # cap 8555   / cdiv 8646  cn 8936  2c2 8987  4c4 8989  0cn0 9193  cz 9270  cuz 9545  cq 9636   mod cmo 10339  cexp 10536  cdvds 11811  cprime 12124   /L clgs 14781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947  ax-caucvg 7948
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-isom 5239  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-frec 6409  df-1o 6434  df-2o 6435  df-oadd 6438  df-er 6552  df-en 6758  df-dom 6759  df-fin 6760  df-sup 7000  df-inf 7001  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-7 9000  df-8 9001  df-n0 9194  df-z 9271  df-uz 9546  df-q 9637  df-rp 9671  df-fz 10026  df-fzo 10160  df-fl 10287  df-mod 10340  df-seqfrec 10463  df-exp 10537  df-ihash 10773  df-cj 10868  df-re 10869  df-im 10870  df-rsqrt 11024  df-abs 11025  df-clim 11304  df-proddc 11576  df-dvds 11812  df-gcd 11961  df-prm 12125  df-phi 12228  df-pc 12302  df-lgs 14782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator