ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdsb GIF version

Theorem pcdvdsb 12713
Description: 𝑃𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))

Proof of Theorem pcdvdsb
StepHypRef Expression
1 nn0re 9319 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant3 1023 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
32rexrd 8137 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ*)
4 pnfge 9926 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
53, 4syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ +∞)
6 pc0 12697 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
763ad2ant1 1021 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt 0) = +∞)
85, 7breqtrrd 4078 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt 0))
9 prmnn 12502 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 nnexpcl 10714 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
119, 10sylan 283 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
12113adant2 1019 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
1312nnzd 9509 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
14 dvds0 12187 . . . . . 6 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ 0)
1513, 14syl 14 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ 0)
168, 152thd 175 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
1716adantr 276 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 = 0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
18 oveq2 5964 . . . . . 6 (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0))
1918breq2d 4062 . . . . 5 (𝑁 = 0 → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ 𝐴 ≤ (𝑃 pCnt 0)))
20 breq2 4054 . . . . 5 (𝑁 = 0 → ((𝑃𝐴) ∥ 𝑁 ↔ (𝑃𝐴) ∥ 0))
2119, 20bibi12d 235 . . . 4 (𝑁 = 0 → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
2221adantl 277 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
2317, 22mpbird 167 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 = 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
24 simpl3 1005 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℕ0)
2524nn0zd 9508 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
26 simpl1 1003 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℙ)
27 simpl2 1004 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
28 simpr 110 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
29 pczcl 12691 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0)
3026, 27, 28, 29syl12anc 1248 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℕ0)
3130nn0zd 9508 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℤ)
32 eluz 9676 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3325, 31, 32syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3426, 9syl 14 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℕ)
3534nnzd 9509 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℤ)
36 dvdsexp 12242 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ∧ (𝑃 pCnt 𝑁) ∈ (ℤ𝐴)) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)))
37363expia 1208 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
3835, 24, 37syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
3933, 38sylbird 170 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
40 pczdvds 12707 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
4126, 27, 28, 40syl12anc 1248 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
4213adantr 276 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃𝐴) ∈ ℤ)
4334, 30nnexpcld 10857 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
4443nnzd 9509 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
45 dvdstr 12209 . . . . . 6 (((𝑃𝐴) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
4642, 44, 27, 45syl3anc 1250 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
4741, 46mpan2d 428 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) → (𝑃𝐴) ∥ 𝑁))
4839, 47syld 45 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ 𝑁))
49 zdcle 9464 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → DECID 𝐴 ≤ (𝑃 pCnt 𝑁))
5025, 31, 49syl2anc 411 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → DECID 𝐴 ≤ (𝑃 pCnt 𝑁))
51 nn0z 9407 . . . . . . . 8 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (𝑃 pCnt 𝑁) ∈ ℤ)
52 nn0z 9407 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
53 zltnle 9433 . . . . . . . 8 (((𝑃 pCnt 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
5451, 52, 53syl2an 289 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
55 nn0ltp1le 9450 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
5654, 55bitr3d 190 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
5730, 24, 56syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
58 peano2nn0 9350 . . . . . . . . . 10 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
5930, 58syl 14 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
6059nn0zd 9508 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℤ)
61 eluz 9676 . . . . . . . 8 ((((𝑃 pCnt 𝑁) + 1) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
6260, 25, 61syl2anc 411 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
63 dvdsexp 12242 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1))) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴))
64633expia 1208 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
6535, 59, 64syl2anc 411 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
6662, 65sylbird 170 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
67 pczndvds 12709 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
6826, 27, 28, 67syl12anc 1248 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
6934, 59nnexpcld 10857 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℕ)
7069nnzd 9509 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ)
71 dvdstr 12209 . . . . . . . . 9 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
7270, 42, 27, 71syl3anc 1250 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
7368, 72mtod 665 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
74 imnan 692 . . . . . . 7 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁) ↔ ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
7573, 74sylibr 134 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁))
7666, 75syld 45 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → ¬ (𝑃𝐴) ∥ 𝑁))
7757, 76sylbid 150 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁))
78 condc 855 . . . 4 (DECID 𝐴 ≤ (𝑃 pCnt 𝑁) → ((¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁) → ((𝑃𝐴) ∥ 𝑁𝐴 ≤ (𝑃 pCnt 𝑁))))
7950, 77, 78sylc 62 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ 𝑁𝐴 ≤ (𝑃 pCnt 𝑁)))
8048, 79impbid 129 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
81 simp2 1001 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝑁 ∈ ℤ)
82 0zd 9399 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 0 ∈ ℤ)
83 zdceq 9463 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
8481, 82, 83syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → DECID 𝑁 = 0)
85 dcne 2388 . . 3 (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0))
8684, 85sylib 122 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑁 = 0 ∨ 𝑁 ≠ 0))
8723, 80, 86mpjaodan 800 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4050  cfv 5279  (class class class)co 5956  cr 7939  0cc0 7940  1c1 7941   + caddc 7943  +∞cpnf 8119  *cxr 8121   < clt 8122  cle 8123  cn 9051  0cn0 9310  cz 9387  cuz 9663  cexp 10700  cdvds 12168  cprime 12499   pCnt cpc 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-2o 6515  df-er 6632  df-en 6840  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-fz 10146  df-fzo 10280  df-fl 10430  df-mod 10485  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-dvds 12169  df-gcd 12345  df-prm 12500  df-pc 12678
This theorem is referenced by:  pcelnn  12714  pcidlem  12716  pcdvdstr  12720  pcgcd1  12721  pcfac  12743  pockthlem  12749  pockthg  12750
  Copyright terms: Public domain W3C validator