ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdsb GIF version

Theorem pcdvdsb 12489
Description: 𝑃𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))

Proof of Theorem pcdvdsb
StepHypRef Expression
1 nn0re 9258 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
213ad2ant3 1022 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
32rexrd 8076 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ*)
4 pnfge 9864 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
53, 4syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ +∞)
6 pc0 12473 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
763ad2ant1 1020 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt 0) = +∞)
85, 7breqtrrd 4061 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt 0))
9 prmnn 12278 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 nnexpcl 10644 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
119, 10sylan 283 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
12113adant2 1018 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
1312nnzd 9447 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
14 dvds0 11971 . . . . . 6 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ 0)
1513, 14syl 14 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ 0)
168, 152thd 175 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
1716adantr 276 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 = 0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
18 oveq2 5930 . . . . . 6 (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0))
1918breq2d 4045 . . . . 5 (𝑁 = 0 → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ 𝐴 ≤ (𝑃 pCnt 0)))
20 breq2 4037 . . . . 5 (𝑁 = 0 → ((𝑃𝐴) ∥ 𝑁 ↔ (𝑃𝐴) ∥ 0))
2119, 20bibi12d 235 . . . 4 (𝑁 = 0 → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
2221adantl 277 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
2317, 22mpbird 167 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 = 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
24 simpl3 1004 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℕ0)
2524nn0zd 9446 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
26 simpl1 1002 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℙ)
27 simpl2 1003 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
28 simpr 110 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
29 pczcl 12467 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0)
3026, 27, 28, 29syl12anc 1247 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℕ0)
3130nn0zd 9446 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℤ)
32 eluz 9614 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3325, 31, 32syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3426, 9syl 14 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℕ)
3534nnzd 9447 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℤ)
36 dvdsexp 12026 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ∧ (𝑃 pCnt 𝑁) ∈ (ℤ𝐴)) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)))
37363expia 1207 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
3835, 24, 37syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
3933, 38sylbird 170 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
40 pczdvds 12483 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
4126, 27, 28, 40syl12anc 1247 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
4213adantr 276 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃𝐴) ∈ ℤ)
4334, 30nnexpcld 10787 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
4443nnzd 9447 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
45 dvdstr 11993 . . . . . 6 (((𝑃𝐴) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
4642, 44, 27, 45syl3anc 1249 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
4741, 46mpan2d 428 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) → (𝑃𝐴) ∥ 𝑁))
4839, 47syld 45 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ 𝑁))
49 zdcle 9402 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → DECID 𝐴 ≤ (𝑃 pCnt 𝑁))
5025, 31, 49syl2anc 411 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → DECID 𝐴 ≤ (𝑃 pCnt 𝑁))
51 nn0z 9346 . . . . . . . 8 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (𝑃 pCnt 𝑁) ∈ ℤ)
52 nn0z 9346 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
53 zltnle 9372 . . . . . . . 8 (((𝑃 pCnt 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
5451, 52, 53syl2an 289 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
55 nn0ltp1le 9388 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
5654, 55bitr3d 190 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
5730, 24, 56syl2anc 411 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
58 peano2nn0 9289 . . . . . . . . . 10 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
5930, 58syl 14 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
6059nn0zd 9446 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℤ)
61 eluz 9614 . . . . . . . 8 ((((𝑃 pCnt 𝑁) + 1) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
6260, 25, 61syl2anc 411 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
63 dvdsexp 12026 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1))) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴))
64633expia 1207 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
6535, 59, 64syl2anc 411 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
6662, 65sylbird 170 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
67 pczndvds 12485 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
6826, 27, 28, 67syl12anc 1247 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
6934, 59nnexpcld 10787 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℕ)
7069nnzd 9447 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ)
71 dvdstr 11993 . . . . . . . . 9 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
7270, 42, 27, 71syl3anc 1249 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
7368, 72mtod 664 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
74 imnan 691 . . . . . . 7 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁) ↔ ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
7573, 74sylibr 134 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁))
7666, 75syld 45 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → ¬ (𝑃𝐴) ∥ 𝑁))
7757, 76sylbid 150 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁))
78 condc 854 . . . 4 (DECID 𝐴 ≤ (𝑃 pCnt 𝑁) → ((¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁) → ((𝑃𝐴) ∥ 𝑁𝐴 ≤ (𝑃 pCnt 𝑁))))
7950, 77, 78sylc 62 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ 𝑁𝐴 ≤ (𝑃 pCnt 𝑁)))
8048, 79impbid 129 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
81 simp2 1000 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝑁 ∈ ℤ)
82 0zd 9338 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 0 ∈ ℤ)
83 zdceq 9401 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
8481, 82, 83syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → DECID 𝑁 = 0)
85 dcne 2378 . . 3 (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0))
8684, 85sylib 122 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑁 = 0 ∨ 𝑁 ≠ 0))
8723, 80, 86mpjaodan 799 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   + caddc 7882  +∞cpnf 8058  *cxr 8060   < clt 8061  cle 8062  cn 8990  0cn0 9249  cz 9326  cuz 9601  cexp 10630  cdvds 11952  cprime 12275   pCnt cpc 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-pc 12454
This theorem is referenced by:  pcelnn  12490  pcidlem  12492  pcdvdstr  12496  pcgcd1  12497  pcfac  12519  pockthlem  12525  pockthg  12526
  Copyright terms: Public domain W3C validator