ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2dv GIF version

Theorem csbeq2dv 3106
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
csbeq2dv (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbeq2dv
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜑
2 csbeq2dv.1 . 2 (𝜑𝐵 = 𝐶)
31, 2csbeq2d 3105 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-sbc 2986  df-csb 3081
This theorem is referenced by:  csbeq2i  3107  mpomptsx  6250  dmmpossx  6252  fmpox  6253  fmpoco  6269  fisumcom2  11581  fprodcom2fi  11769  prdsex  12880  imasex  12888  fsumcncntop  14724
  Copyright terms: Public domain W3C validator