ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfco GIF version

Theorem nfco 4832
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1 𝑥𝐴
nfco.2 𝑥𝐵
Assertion
Ref Expression
nfco 𝑥(𝐴𝐵)

Proof of Theorem nfco
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4673 . 2 (𝐴𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
2 nfcv 2339 . . . . . 6 𝑥𝑦
3 nfco.2 . . . . . 6 𝑥𝐵
4 nfcv 2339 . . . . . 6 𝑥𝑤
52, 3, 4nfbr 4080 . . . . 5 𝑥 𝑦𝐵𝑤
6 nfco.1 . . . . . 6 𝑥𝐴
7 nfcv 2339 . . . . . 6 𝑥𝑧
84, 6, 7nfbr 4080 . . . . 5 𝑥 𝑤𝐴𝑧
95, 8nfan 1579 . . . 4 𝑥(𝑦𝐵𝑤𝑤𝐴𝑧)
109nfex 1651 . . 3 𝑥𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)
1110nfopab 4102 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧)}
121, 11nfcxfr 2336 1 𝑥(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1506  wnfc 2326   class class class wbr 4034  {copab 4094  ccom 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-co 4673
This theorem is referenced by:  nffun  5282  nftpos  6346  cnmpt11  14603  cnmpt21  14611
  Copyright terms: Public domain W3C validator