Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfco | GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 | ⊢ Ⅎ𝑥𝐴 |
nfco.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfco | ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4613 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} | |
2 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
3 | nfco.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 4028 | . . . . 5 ⊢ Ⅎ𝑥 𝑦𝐵𝑤 |
6 | nfco.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
7 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
8 | 4, 6, 7 | nfbr 4028 | . . . . 5 ⊢ Ⅎ𝑥 𝑤𝐴𝑧 |
9 | 5, 8 | nfan 1553 | . . . 4 ⊢ Ⅎ𝑥(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
10 | 9 | nfex 1625 | . . 3 ⊢ Ⅎ𝑥∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
11 | 10 | nfopab 4050 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} |
12 | 1, 11 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∃wex 1480 Ⅎwnfc 2295 class class class wbr 3982 {copab 4042 ∘ ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-co 4613 |
This theorem is referenced by: nffun 5211 nftpos 6247 cnmpt11 12923 cnmpt21 12931 |
Copyright terms: Public domain | W3C validator |