| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfco | GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| nfco.1 | ⊢ Ⅎ𝑥𝐴 |
| nfco.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfco | ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4673 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} | |
| 2 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfco.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑤 | |
| 5 | 2, 3, 4 | nfbr 4080 | . . . . 5 ⊢ Ⅎ𝑥 𝑦𝐵𝑤 |
| 6 | nfco.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 7 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 8 | 4, 6, 7 | nfbr 4080 | . . . . 5 ⊢ Ⅎ𝑥 𝑤𝐴𝑧 |
| 9 | 5, 8 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑥(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
| 10 | 9 | nfex 1651 | . . 3 ⊢ Ⅎ𝑥∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
| 11 | 10 | nfopab 4102 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} |
| 12 | 1, 11 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1506 Ⅎwnfc 2326 class class class wbr 4034 {copab 4094 ∘ ccom 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-co 4673 |
| This theorem is referenced by: nffun 5282 nftpos 6346 cnmpt11 14603 cnmpt21 14611 |
| Copyright terms: Public domain | W3C validator |