![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfco | GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 | ⊢ Ⅎ𝑥𝐴 |
nfco.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfco | ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4637 | . 2 ⊢ (𝐴 ∘ 𝐵) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} | |
2 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
3 | nfco.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 4051 | . . . . 5 ⊢ Ⅎ𝑥 𝑦𝐵𝑤 |
6 | nfco.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
7 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
8 | 4, 6, 7 | nfbr 4051 | . . . . 5 ⊢ Ⅎ𝑥 𝑤𝐴𝑧 |
9 | 5, 8 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑥(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
10 | 9 | nfex 1637 | . . 3 ⊢ Ⅎ𝑥∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧) |
11 | 10 | nfopab 4073 | . 2 ⊢ Ⅎ𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑤(𝑦𝐵𝑤 ∧ 𝑤𝐴𝑧)} |
12 | 1, 11 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1492 Ⅎwnfc 2306 class class class wbr 4005 {copab 4065 ∘ ccom 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-co 4637 |
This theorem is referenced by: nffun 5241 nftpos 6282 cnmpt11 13868 cnmpt21 13876 |
Copyright terms: Public domain | W3C validator |