| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relco | GIF version | ||
| Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| Ref | Expression |
|---|---|
| relco | ⊢ Rel (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4727 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
| 2 | 1 | relopabi 4846 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∃wex 1538 class class class wbr 4082 ∘ ccom 4722 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 df-rel 4725 df-co 4727 |
| This theorem is referenced by: dfco2 5227 resco 5232 coiun 5237 cocnvcnv2 5239 cores2 5240 co02 5241 co01 5242 coi1 5243 coass 5246 cossxp 5250 funco 5357 fmptco 5800 cofunexg 6252 dftpos4 6407 znleval 14611 |
| Copyright terms: Public domain | W3C validator |