ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relco GIF version

Theorem relco 5180
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
relco Rel (𝐴𝐵)

Proof of Theorem relco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4683 . 2 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
21relopabi 4802 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1514   class class class wbr 4043  ccom 4678  Rel wrel 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4680  df-rel 4681  df-co 4683
This theorem is referenced by:  dfco2  5181  resco  5186  coiun  5191  cocnvcnv2  5193  cores2  5194  co02  5195  co01  5196  coi1  5197  coass  5200  cossxp  5204  funco  5310  fmptco  5745  cofunexg  6193  dftpos4  6348  znleval  14357
  Copyright terms: Public domain W3C validator