ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcom GIF version

Theorem xpcom 5216
Description: Composition of two cross products. (Contributed by Jim Kingdon, 20-Dec-2018.)
Assertion
Ref Expression
xpcom (∃𝑥 𝑥𝐵 → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem xpcom
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ibar 301 . . . 4 (∃𝑥 𝑥𝐵 → ((𝑎𝐴𝑐𝐶) ↔ (∃𝑥 𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶))))
2 ancom 266 . . . . . . . 8 ((𝑎𝐴𝑥𝐵) ↔ (𝑥𝐵𝑎𝐴))
32anbi1i 458 . . . . . . 7 (((𝑎𝐴𝑥𝐵) ∧ (𝑥𝐵𝑐𝐶)) ↔ ((𝑥𝐵𝑎𝐴) ∧ (𝑥𝐵𝑐𝐶)))
4 brxp 4694 . . . . . . . 8 (𝑎(𝐴 × 𝐵)𝑥 ↔ (𝑎𝐴𝑥𝐵))
5 brxp 4694 . . . . . . . 8 (𝑥(𝐵 × 𝐶)𝑐 ↔ (𝑥𝐵𝑐𝐶))
64, 5anbi12i 460 . . . . . . 7 ((𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ ((𝑎𝐴𝑥𝐵) ∧ (𝑥𝐵𝑐𝐶)))
7 anandi 590 . . . . . . 7 ((𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)) ↔ ((𝑥𝐵𝑎𝐴) ∧ (𝑥𝐵𝑐𝐶)))
83, 6, 73bitr4i 212 . . . . . 6 ((𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ (𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)))
98exbii 1619 . . . . 5 (∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)))
10 19.41v 1917 . . . . 5 (∃𝑥(𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)) ↔ (∃𝑥 𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)))
119, 10bitr2i 185 . . . 4 ((∃𝑥 𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)) ↔ ∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐))
121, 11bitr2di 197 . . 3 (∃𝑥 𝑥𝐵 → (∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ (𝑎𝐴𝑐𝐶)))
1312opabbidv 4099 . 2 (∃𝑥 𝑥𝐵 → {⟨𝑎, 𝑐⟩ ∣ ∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐)} = {⟨𝑎, 𝑐⟩ ∣ (𝑎𝐴𝑐𝐶)})
14 df-co 4672 . 2 ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐)}
15 df-xp 4669 . 2 (𝐴 × 𝐶) = {⟨𝑎, 𝑐⟩ ∣ (𝑎𝐴𝑐𝐶)}
1613, 14, 153eqtr4g 2254 1 (∃𝑥 𝑥𝐵 → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167   class class class wbr 4033  {copab 4093   × cxp 4661  ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-co 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator