ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcom GIF version

Theorem xpcom 5157
Description: Composition of two cross products. (Contributed by Jim Kingdon, 20-Dec-2018.)
Assertion
Ref Expression
xpcom (∃𝑥 𝑥𝐵 → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem xpcom
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ibar 299 . . . 4 (∃𝑥 𝑥𝐵 → ((𝑎𝐴𝑐𝐶) ↔ (∃𝑥 𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶))))
2 ancom 264 . . . . . . . 8 ((𝑎𝐴𝑥𝐵) ↔ (𝑥𝐵𝑎𝐴))
32anbi1i 455 . . . . . . 7 (((𝑎𝐴𝑥𝐵) ∧ (𝑥𝐵𝑐𝐶)) ↔ ((𝑥𝐵𝑎𝐴) ∧ (𝑥𝐵𝑐𝐶)))
4 brxp 4642 . . . . . . . 8 (𝑎(𝐴 × 𝐵)𝑥 ↔ (𝑎𝐴𝑥𝐵))
5 brxp 4642 . . . . . . . 8 (𝑥(𝐵 × 𝐶)𝑐 ↔ (𝑥𝐵𝑐𝐶))
64, 5anbi12i 457 . . . . . . 7 ((𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ ((𝑎𝐴𝑥𝐵) ∧ (𝑥𝐵𝑐𝐶)))
7 anandi 585 . . . . . . 7 ((𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)) ↔ ((𝑥𝐵𝑎𝐴) ∧ (𝑥𝐵𝑐𝐶)))
83, 6, 73bitr4i 211 . . . . . 6 ((𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ (𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)))
98exbii 1598 . . . . 5 (∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)))
10 19.41v 1895 . . . . 5 (∃𝑥(𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)) ↔ (∃𝑥 𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)))
119, 10bitr2i 184 . . . 4 ((∃𝑥 𝑥𝐵 ∧ (𝑎𝐴𝑐𝐶)) ↔ ∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐))
121, 11bitr2di 196 . . 3 (∃𝑥 𝑥𝐵 → (∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐) ↔ (𝑎𝐴𝑐𝐶)))
1312opabbidv 4055 . 2 (∃𝑥 𝑥𝐵 → {⟨𝑎, 𝑐⟩ ∣ ∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐)} = {⟨𝑎, 𝑐⟩ ∣ (𝑎𝐴𝑐𝐶)})
14 df-co 4620 . 2 ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑥(𝑎(𝐴 × 𝐵)𝑥𝑥(𝐵 × 𝐶)𝑐)}
15 df-xp 4617 . 2 (𝐴 × 𝐶) = {⟨𝑎, 𝑐⟩ ∣ (𝑎𝐴𝑐𝐶)}
1613, 14, 153eqtr4g 2228 1 (∃𝑥 𝑥𝐵 → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141   class class class wbr 3989  {copab 4049   × cxp 4609  ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-co 4620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator