ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coss2 GIF version

Theorem coss2 4877
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
Assertion
Ref Expression
coss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem coss2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝐴𝐵𝐴𝐵)
21ssbrd 4125 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑦𝑥𝐵𝑦))
32anim1d 336 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑦𝐶𝑧) → (𝑥𝐵𝑦𝑦𝐶𝑧)))
43eximdv 1926 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)))
54ssopab2dv 4366 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)})
6 df-co 4727 . 2 (𝐶𝐴) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧)}
7 df-co 4727 . 2 (𝐶𝐵) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)}
85, 6, 73sstr4g 3267 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538  wss 3197   class class class wbr 4082  {copab 4143  ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4083  df-opab 4145  df-co 4727
This theorem is referenced by:  coeq2  4879  funss  5336  tposss  6390  dftpos4  6407
  Copyright terms: Public domain W3C validator