| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > coss2 | GIF version | ||
| Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| coss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | ssbrd 4076 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | 
| 3 | 2 | anim1d 336 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) | 
| 4 | 3 | eximdv 1894 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) | 
| 5 | 4 | ssopab2dv 4313 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)}) | 
| 6 | df-co 4672 | . 2 ⊢ (𝐶 ∘ 𝐴) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} | |
| 7 | df-co 4672 | . 2 ⊢ (𝐶 ∘ 𝐵) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)} | |
| 8 | 5, 6, 7 | 3sstr4g 3226 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 ⊆ wss 3157 class class class wbr 4033 {copab 4093 ∘ ccom 4667 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-co 4672 | 
| This theorem is referenced by: coeq2 4824 funss 5277 tposss 6304 dftpos4 6321 | 
| Copyright terms: Public domain | W3C validator |