ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coss2 GIF version

Theorem coss2 4818
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
Assertion
Ref Expression
coss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem coss2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝐴𝐵𝐴𝐵)
21ssbrd 4072 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑦𝑥𝐵𝑦))
32anim1d 336 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑦𝐶𝑧) → (𝑥𝐵𝑦𝑦𝐶𝑧)))
43eximdv 1891 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)))
54ssopab2dv 4309 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)})
6 df-co 4668 . 2 (𝐶𝐴) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧)}
7 df-co 4668 . 2 (𝐶𝐵) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)}
85, 6, 73sstr4g 3222 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wss 3153   class class class wbr 4029  {copab 4089  ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-co 4668
This theorem is referenced by:  coeq2  4820  funss  5273  tposss  6299  dftpos4  6316
  Copyright terms: Public domain W3C validator