| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brcog | GIF version | ||
| Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| brcog | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4036 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐷𝑥 ↔ 𝐴𝐷𝑥)) | |
| 2 | breq2 4037 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝐵)) | |
| 3 | 1, 2 | bi2anan9 606 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → ((𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
| 4 | 3 | exbidv 1839 | . 2 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
| 5 | df-co 4672 | . 2 ⊢ (𝐶 ∘ 𝐷) = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧)} | |
| 6 | 4, 5 | brabga 4298 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 class class class wbr 4033 ∘ ccom 4667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-co 4672 |
| This theorem is referenced by: opelco2g 4834 brcogw 4835 brco 4837 brcodir 5057 foeqcnvco 5837 brtpos2 6309 ertr 6607 znleval 14209 |
| Copyright terms: Public domain | W3C validator |