ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcog GIF version

Theorem brcog 4644
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem brcog
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3878 . . . 4 (𝑦 = 𝐴 → (𝑦𝐷𝑥𝐴𝐷𝑥))
2 breq2 3879 . . . 4 (𝑧 = 𝐵 → (𝑥𝐶𝑧𝑥𝐶𝐵))
31, 2bi2anan9 576 . . 3 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝐷𝑥𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥𝑥𝐶𝐵)))
43exbidv 1764 . 2 ((𝑦 = 𝐴𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
5 df-co 4486 . 2 (𝐶𝐷) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧)}
64, 5brabga 4124 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wex 1436  wcel 1448   class class class wbr 3875  ccom 4481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-co 4486
This theorem is referenced by:  opelco2g  4645  brcogw  4646  brco  4648  brcodir  4862  foeqcnvco  5623  brtpos2  6078  ertr  6374
  Copyright terms: Public domain W3C validator