ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcog GIF version

Theorem brcog 4833
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem brcog
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4036 . . . 4 (𝑦 = 𝐴 → (𝑦𝐷𝑥𝐴𝐷𝑥))
2 breq2 4037 . . . 4 (𝑧 = 𝐵 → (𝑥𝐶𝑧𝑥𝐶𝐵))
31, 2bi2anan9 606 . . 3 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝐷𝑥𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥𝑥𝐶𝐵)))
43exbidv 1839 . 2 ((𝑦 = 𝐴𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
5 df-co 4672 . 2 (𝐶𝐷) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧)}
64, 5brabga 4298 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167   class class class wbr 4033  ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-co 4672
This theorem is referenced by:  opelco2g  4834  brcogw  4835  brco  4837  brcodir  5057  foeqcnvco  5837  brtpos2  6309  ertr  6607  znleval  14209
  Copyright terms: Public domain W3C validator