ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coundir GIF version

Theorem coundir 4887
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundir ((𝐴𝐵) ∘ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem coundir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 3883 . . 3 ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}) = {⟨𝑥, 𝑧⟩ ∣ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧))}
2 brun 3857 . . . . . . . 8 (𝑦(𝐴𝐵)𝑧 ↔ (𝑦𝐴𝑧𝑦𝐵𝑧))
32anbi2i 445 . . . . . . 7 ((𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ (𝑥𝐶𝑦 ∧ (𝑦𝐴𝑧𝑦𝐵𝑧)))
4 andi 765 . . . . . . 7 ((𝑥𝐶𝑦 ∧ (𝑦𝐴𝑧𝑦𝐵𝑧)) ↔ ((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
53, 4bitri 182 . . . . . 6 ((𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ ((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
65exbii 1537 . . . . 5 (∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ ∃𝑦((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
7 19.43 1560 . . . . 5 (∃𝑦((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)) ↔ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
86, 7bitr2i 183 . . . 4 ((∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)) ↔ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧))
98opabbii 3871 . . 3 {⟨𝑥, 𝑧⟩ ∣ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧))} = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
101, 9eqtri 2103 . 2 ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
11 df-co 4410 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
12 df-co 4410 . . 3 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
1311, 12uneq12i 3136 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
14 df-co 4410 . 2 ((𝐴𝐵) ∘ 𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
1510, 13, 143eqtr4ri 2114 1 ((𝐴𝐵) ∘ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 102  wo 662   = wceq 1285  wex 1422  cun 2982   class class class wbr 3811  {copab 3864  ccom 4405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-un 2988  df-br 3812  df-opab 3866  df-co 4410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator