![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cotr | GIF version |
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cotr | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4669 | . . . 4 ⊢ (𝑅 ∘ 𝑅) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)} | |
2 | 1 | relopabi 4788 | . . 3 ⊢ Rel (𝑅 ∘ 𝑅) |
3 | ssrel 4748 | . . 3 ⊢ (Rel (𝑅 ∘ 𝑅) → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
5 | vex 2763 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | vex 2763 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
7 | 5, 6 | opelco 4835 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) |
8 | df-br 4031 | . . . . . . . 8 ⊢ (𝑥𝑅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝑅) | |
9 | 8 | bicomi 132 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ 𝑅 ↔ 𝑥𝑅𝑧) |
10 | 7, 9 | imbi12i 239 | . . . . . 6 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
11 | 19.23v 1894 | . . . . . 6 ⊢ (∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
12 | 10, 11 | bitr4i 187 | . . . . 5 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
13 | 12 | albii 1481 | . . . 4 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
14 | alcom 1489 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
15 | 13, 14 | bitri 184 | . . 3 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
16 | 15 | albii 1481 | . 2 ⊢ (∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
17 | 4, 16 | bitri 184 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3154 〈cop 3622 class class class wbr 4030 ∘ ccom 4664 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-co 4669 |
This theorem is referenced by: xpidtr 5057 trin2 5058 dfer2 6590 |
Copyright terms: Public domain | W3C validator |