ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cotr GIF version

Theorem cotr 5070
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝑅

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4689 . . . 4 (𝑅𝑅) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧)}
21relopabi 4808 . . 3 Rel (𝑅𝑅)
3 ssrel 4768 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
5 vex 2776 . . . . . . . 8 𝑥 ∈ V
6 vex 2776 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 4855 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
8 df-br 4049 . . . . . . . 8 (𝑥𝑅𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅)
98bicomi 132 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝑅𝑥𝑅𝑧)
107, 9imbi12i 239 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 19.23v 1907 . . . . . 6 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1210, 11bitr4i 187 . . . . 5 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1312albii 1494 . . . 4 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
14 alcom 1502 . . . 4 (∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1513, 14bitri 184 . . 3 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615albii 1494 . 2 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
174, 16bitri 184 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wex 1516  wcel 2177  wss 3168  cop 3638   class class class wbr 4048  ccom 4684  Rel wrel 4685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-xp 4686  df-rel 4687  df-co 4689
This theorem is referenced by:  xpidtr  5079  trin2  5080  dfer2  6631
  Copyright terms: Public domain W3C validator