| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cotr | GIF version | ||
| Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cotr | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4689 | . . . 4 ⊢ (𝑅 ∘ 𝑅) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)} | |
| 2 | 1 | relopabi 4808 | . . 3 ⊢ Rel (𝑅 ∘ 𝑅) |
| 3 | ssrel 4768 | . . 3 ⊢ (Rel (𝑅 ∘ 𝑅) → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
| 5 | vex 2776 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | vex 2776 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 7 | 5, 6 | opelco 4855 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) |
| 8 | df-br 4049 | . . . . . . . 8 ⊢ (𝑥𝑅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝑅) | |
| 9 | 8 | bicomi 132 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ 𝑅 ↔ 𝑥𝑅𝑧) |
| 10 | 7, 9 | imbi12i 239 | . . . . . 6 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 11 | 19.23v 1907 | . . . . . 6 ⊢ (∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 12 | 10, 11 | bitr4i 187 | . . . . 5 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 13 | 12 | albii 1494 | . . . 4 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 14 | alcom 1502 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 15 | 13, 14 | bitri 184 | . . 3 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 16 | 15 | albii 1494 | . 2 ⊢ (∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 17 | 4, 16 | bitri 184 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3168 〈cop 3638 class class class wbr 4048 ∘ ccom 4684 Rel wrel 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-rel 4687 df-co 4689 |
| This theorem is referenced by: xpidtr 5079 trin2 5080 dfer2 6631 |
| Copyright terms: Public domain | W3C validator |