| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cotr | GIF version | ||
| Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cotr | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4673 | . . . 4 ⊢ (𝑅 ∘ 𝑅) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)} | |
| 2 | 1 | relopabi 4792 | . . 3 ⊢ Rel (𝑅 ∘ 𝑅) |
| 3 | ssrel 4752 | . . 3 ⊢ (Rel (𝑅 ∘ 𝑅) → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
| 5 | vex 2766 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | vex 2766 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 7 | 5, 6 | opelco 4839 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) |
| 8 | df-br 4035 | . . . . . . . 8 ⊢ (𝑥𝑅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝑅) | |
| 9 | 8 | bicomi 132 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ 𝑅 ↔ 𝑥𝑅𝑧) |
| 10 | 7, 9 | imbi12i 239 | . . . . . 6 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 11 | 19.23v 1897 | . . . . . 6 ⊢ (∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 12 | 10, 11 | bitr4i 187 | . . . . 5 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 13 | 12 | albii 1484 | . . . 4 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 14 | alcom 1492 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 15 | 13, 14 | bitri 184 | . . 3 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 16 | 15 | albii 1484 | . 2 ⊢ (∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 17 | 4, 16 | bitri 184 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 〈cop 3626 class class class wbr 4034 ∘ ccom 4668 Rel wrel 4669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-co 4673 |
| This theorem is referenced by: xpidtr 5061 trin2 5062 dfer2 6602 |
| Copyright terms: Public domain | W3C validator |