ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cotr GIF version

Theorem cotr 4985
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝑅

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4613 . . . 4 (𝑅𝑅) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧)}
21relopabi 4730 . . 3 Rel (𝑅𝑅)
3 ssrel 4692 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
5 vex 2729 . . . . . . . 8 𝑥 ∈ V
6 vex 2729 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 4776 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
8 df-br 3983 . . . . . . . 8 (𝑥𝑅𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅)
98bicomi 131 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝑅𝑥𝑅𝑧)
107, 9imbi12i 238 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 19.23v 1871 . . . . . 6 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1210, 11bitr4i 186 . . . . 5 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1312albii 1458 . . . 4 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
14 alcom 1466 . . . 4 (∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1513, 14bitri 183 . . 3 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615albii 1458 . 2 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
174, 16bitri 183 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wex 1480  wcel 2136  wss 3116  cop 3579   class class class wbr 3982  ccom 4608  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-co 4613
This theorem is referenced by:  xpidtr  4994  trin2  4995  dfer2  6502
  Copyright terms: Public domain W3C validator