| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cotr | GIF version | ||
| Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cotr | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4725 | . . . 4 ⊢ (𝑅 ∘ 𝑅) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)} | |
| 2 | 1 | relopabi 4844 | . . 3 ⊢ Rel (𝑅 ∘ 𝑅) |
| 3 | ssrel 4804 | . . 3 ⊢ (Rel (𝑅 ∘ 𝑅) → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅)) |
| 5 | vex 2802 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 6 | vex 2802 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 7 | 5, 6 | opelco 4891 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) |
| 8 | df-br 4083 | . . . . . . . 8 ⊢ (𝑥𝑅𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝑅) | |
| 9 | 8 | bicomi 132 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ 𝑅 ↔ 𝑥𝑅𝑧) |
| 10 | 7, 9 | imbi12i 239 | . . . . . 6 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 11 | 19.23v 1929 | . . . . . 6 ⊢ (∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 12 | 10, 11 | bitr4i 187 | . . . . 5 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 13 | 12 | albii 1516 | . . . 4 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 14 | alcom 1524 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
| 15 | 13, 14 | bitri 184 | . . 3 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 16 | 15 | albii 1516 | . 2 ⊢ (∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝑅 ∘ 𝑅) → 〈𝑥, 𝑧〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 17 | 4, 16 | bitri 184 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 ∘ ccom 4720 Rel wrel 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-co 4725 |
| This theorem is referenced by: xpidtr 5115 trin2 5116 dfer2 6671 |
| Copyright terms: Public domain | W3C validator |