ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cotr GIF version

Theorem cotr 5106
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝑅

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4725 . . . 4 (𝑅𝑅) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧)}
21relopabi 4844 . . 3 Rel (𝑅𝑅)
3 ssrel 4804 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
5 vex 2802 . . . . . . . 8 𝑥 ∈ V
6 vex 2802 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 4891 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
8 df-br 4083 . . . . . . . 8 (𝑥𝑅𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅)
98bicomi 132 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝑅𝑥𝑅𝑧)
107, 9imbi12i 239 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 19.23v 1929 . . . . . 6 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1210, 11bitr4i 187 . . . . 5 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1312albii 1516 . . . 4 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
14 alcom 1524 . . . 4 (∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1513, 14bitri 184 . . 3 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615albii 1516 . 2 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
174, 16bitri 184 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wex 1538  wcel 2200  wss 3197  cop 3669   class class class wbr 4082  ccom 4720  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-co 4725
This theorem is referenced by:  xpidtr  5115  trin2  5116  dfer2  6671
  Copyright terms: Public domain W3C validator