ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cotr GIF version

Theorem cotr 5047
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝑅

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4668 . . . 4 (𝑅𝑅) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧)}
21relopabi 4787 . . 3 Rel (𝑅𝑅)
3 ssrel 4747 . . 3 (Rel (𝑅𝑅) → ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
5 vex 2763 . . . . . . . 8 𝑥 ∈ V
6 vex 2763 . . . . . . . 8 𝑧 ∈ V
75, 6opelco 4834 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
8 df-br 4030 . . . . . . . 8 (𝑥𝑅𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅)
98bicomi 132 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ 𝑅𝑥𝑅𝑧)
107, 9imbi12i 239 . . . . . 6 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 19.23v 1894 . . . . . 6 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1210, 11bitr4i 187 . . . . 5 ((⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1312albii 1481 . . . 4 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
14 alcom 1489 . . . 4 (∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1513, 14bitri 184 . . 3 (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615albii 1481 . 2 (∀𝑥𝑧(⟨𝑥, 𝑧⟩ ∈ (𝑅𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
174, 16bitri 184 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1503  wcel 2164  wss 3153  cop 3621   class class class wbr 4029  ccom 4663  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-co 4668
This theorem is referenced by:  xpidtr  5056  trin2  5057  dfer2  6588
  Copyright terms: Public domain W3C validator