| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elco | GIF version | ||
| Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| elco | ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4727 | . . 3 ⊢ (𝑅 ∘ 𝑆) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ 𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)}) |
| 3 | elopab 4345 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
| 4 | 19.42v 1953 | . . . . . . 7 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ (𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
| 5 | 4 | bicomi 132 | . . . . . 6 ⊢ ((𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 6 | 5 | exbii 1651 | . . . . 5 ⊢ (∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑧∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 7 | excom 1710 | . . . . 5 ⊢ (∃𝑧∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
| 8 | 6, 7 | bitri 184 | . . . 4 ⊢ (∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 9 | 8 | exbii 1651 | . . 3 ⊢ (∃𝑥∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 10 | 3, 9 | bitri 184 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 11 | 2, 10 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 〈cop 3669 class class class wbr 4082 {copab 4143 ∘ ccom 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-co 4727 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |