ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elco GIF version

Theorem elco 4887
Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
elco (𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem elco
StepHypRef Expression
1 df-co 4727 . . 3 (𝑅𝑆) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)}
21eleq2i 2296 . 2 (𝐴 ∈ (𝑅𝑆) ↔ 𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)})
3 elopab 4345 . . 3 (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)} ↔ ∃𝑥𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)))
4 19.42v 1953 . . . . . . 7 (∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ (𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)))
54bicomi 132 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
65exbii 1651 . . . . 5 (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑧𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
7 excom 1710 . . . . 5 (∃𝑧𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
86, 7bitri 184 . . . 4 (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
98exbii 1651 . . 3 (∃𝑥𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
103, 9bitri 184 . 2 (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
112, 10bitri 184 1 (𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  cop 3669   class class class wbr 4082  {copab 4143  ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-co 4727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator