![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elco | GIF version |
Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
elco | ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4637 | . . 3 ⊢ (𝑅 ∘ 𝑆) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ 𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)}) |
3 | elopab 4260 | . . 3 ⊢ (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
4 | 19.42v 1906 | . . . . . . 7 ⊢ (∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ (𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
5 | 4 | bicomi 132 | . . . . . 6 ⊢ ((𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
6 | 5 | exbii 1605 | . . . . 5 ⊢ (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑧∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
7 | excom 1664 | . . . . 5 ⊢ (∃𝑧∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
8 | 6, 7 | bitri 184 | . . . 4 ⊢ (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
9 | 8 | exbii 1605 | . . 3 ⊢ (∃𝑥∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
10 | 3, 9 | bitri 184 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
11 | 2, 10 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 {copab 4065 ∘ ccom 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-co 4637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |