| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elco | GIF version | ||
| Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| elco | ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-co 4683 | . . 3 ⊢ (𝑅 ∘ 𝑆) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} | |
| 2 | 1 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ 𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)}) |
| 3 | elopab 4303 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
| 4 | 19.42v 1929 | . . . . . . 7 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ (𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
| 5 | 4 | bicomi 132 | . . . . . 6 ⊢ ((𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 6 | 5 | exbii 1627 | . . . . 5 ⊢ (∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑧∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 7 | excom 1686 | . . . . 5 ⊢ (∃𝑧∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
| 8 | 6, 7 | bitri 184 | . . . 4 ⊢ (∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 9 | 8 | exbii 1627 | . . 3 ⊢ (∃𝑥∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 10 | 3, 9 | bitri 184 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| 11 | 2, 10 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 〈cop 3635 class class class wbr 4043 {copab 4103 ∘ ccom 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-co 4683 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |