Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elco | GIF version |
Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
elco | ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4592 | . . 3 ⊢ (𝑅 ∘ 𝑆) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} | |
2 | 1 | eleq2i 2224 | . 2 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ 𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)}) |
3 | elopab 4217 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
4 | 19.42v 1886 | . . . . . . 7 ⊢ (∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ (𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
5 | 4 | bicomi 131 | . . . . . 6 ⊢ ((𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
6 | 5 | exbii 1585 | . . . . 5 ⊢ (∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑧∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
7 | excom 1644 | . . . . 5 ⊢ (∃𝑧∃𝑦(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) | |
8 | 6, 7 | bitri 183 | . . . 4 ⊢ (∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
9 | 8 | exbii 1585 | . . 3 ⊢ (∃𝑥∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
10 | 3, 9 | bitri 183 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧)} ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
11 | 2, 10 | bitri 183 | 1 ⊢ (𝐴 ∈ (𝑅 ∘ 𝑆) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈𝑥, 𝑧〉 ∧ (𝑥𝑆𝑦 ∧ 𝑦𝑅𝑧))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ∃wex 1472 ∈ wcel 2128 〈cop 3563 class class class wbr 3965 {copab 4024 ∘ ccom 4587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-co 4592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |