ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elco GIF version

Theorem elco 4705
Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
elco (𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem elco
StepHypRef Expression
1 df-co 4548 . . 3 (𝑅𝑆) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)}
21eleq2i 2206 . 2 (𝐴 ∈ (𝑅𝑆) ↔ 𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)})
3 elopab 4180 . . 3 (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)} ↔ ∃𝑥𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)))
4 19.42v 1878 . . . . . . 7 (∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ (𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)))
54bicomi 131 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
65exbii 1584 . . . . 5 (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑧𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
7 excom 1642 . . . . 5 (∃𝑧𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
86, 7bitri 183 . . . 4 (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
98exbii 1584 . . 3 (∃𝑥𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
103, 9bitri 183 . 2 (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
112, 10bitri 183 1 (𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  cop 3530   class class class wbr 3929  {copab 3988  ccom 4543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-co 4548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator