ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elco GIF version

Theorem elco 4777
Description: Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
elco (𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem elco
StepHypRef Expression
1 df-co 4620 . . 3 (𝑅𝑆) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)}
21eleq2i 2237 . 2 (𝐴 ∈ (𝑅𝑆) ↔ 𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)})
3 elopab 4243 . . 3 (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)} ↔ ∃𝑥𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)))
4 19.42v 1899 . . . . . . 7 (∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ (𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)))
54bicomi 131 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
65exbii 1598 . . . . 5 (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑧𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
7 excom 1657 . . . . 5 (∃𝑧𝑦(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
86, 7bitri 183 . . . 4 (∃𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
98exbii 1598 . . 3 (∃𝑥𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
103, 9bitri 183 . 2 (𝐴 ∈ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝑆𝑦𝑦𝑅𝑧)} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
112, 10bitri 183 1 (𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cop 3586   class class class wbr 3989  {copab 4049  ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-co 4620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator