ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiunya GIF version

Theorem nfiunya 3894
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunya.1 𝑦𝐴
nfiunya.2 𝑦𝐵
Assertion
Ref Expression
nfiunya 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiunya
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3868 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiunya.1 . . . 4 𝑦𝐴
3 nfiunya.2 . . . . 5 𝑦𝐵
43nfcri 2302 . . . 4 𝑦 𝑧𝐵
52, 4nfrexya 2507 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2313 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2305 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2136  {cab 2151  wnfc 2295  wrex 2445   ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-iun 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator