| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiunya | GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) |
| Ref | Expression |
|---|---|
| nfiunya.1 | ⊢ Ⅎ𝑦𝐴 |
| nfiunya.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfiunya | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 3918 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfiunya.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfiunya.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 3 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 5 | 2, 4 | nfrexya 2538 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
| 6 | 5 | nfab 2344 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 ∃wrex 2476 ∪ ciun 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-iun 3918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |