ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiunya GIF version

Theorem nfiunya 3957
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunya.1 𝑦𝐴
nfiunya.2 𝑦𝐵
Assertion
Ref Expression
nfiunya 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiunya
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3931 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiunya.1 . . . 4 𝑦𝐴
3 nfiunya.2 . . . . 5 𝑦𝐵
43nfcri 2343 . . . 4 𝑦 𝑧𝐵
52, 4nfrexya 2548 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2354 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2346 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2177  {cab 2192  wnfc 2336  wrex 2486   ciun 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-iun 3931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator