Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reliun | GIF version |
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
reliun | ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 3875 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | 1 | releqi 4694 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵}) |
3 | df-rel 4618 | . 2 ⊢ (Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V)) | |
4 | abss 3216 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
5 | df-rel 4618 | . . . . . 6 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
6 | dfss2 3136 | . . . . . 6 ⊢ (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
7 | 5, 6 | bitri 183 | . . . . 5 ⊢ (Rel 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
8 | 7 | ralbii 2476 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
9 | ralcom4 2752 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
10 | r19.23v 2579 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
11 | 10 | albii 1463 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
12 | 8, 9, 11 | 3bitri 205 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
13 | 4, 12 | bitr4i 186 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
14 | 2, 3, 13 | 3bitri 205 | 1 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∃wrex 2449 Vcvv 2730 ⊆ wss 3121 ∪ ciun 3873 × cxp 4609 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-iun 3875 df-rel 4618 |
This theorem is referenced by: reluni 4734 eliunxp 4750 opeliunxp2 4751 dfco2 5110 coiun 5120 opeliunxp2f 6217 fisumcom2 11401 fprodcom2fi 11589 reldvg 13442 |
Copyright terms: Public domain | W3C validator |