ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliun GIF version

Theorem reliun 4741
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)

Proof of Theorem reliun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3884 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21releqi 4703 . 2 (Rel 𝑥𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
3 df-rel 4627 . 2 (Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V))
4 abss 3222 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
5 df-rel 4627 . . . . . 6 (Rel 𝐵𝐵 ⊆ (V × V))
6 dfss2 3142 . . . . . 6 (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
75, 6bitri 184 . . . . 5 (Rel 𝐵 ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
87ralbii 2481 . . . 4 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)))
9 ralcom4 2757 . . . 4 (∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)))
10 r19.23v 2584 . . . . 5 (∀𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ (∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
1110albii 1468 . . . 4 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
128, 9, 113bitri 206 . . 3 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
134, 12bitr4i 187 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑥𝐴 Rel 𝐵)
142, 3, 133bitri 206 1 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wcel 2146  {cab 2161  wral 2453  wrex 2454  Vcvv 2735  wss 3127   ciun 3882   × cxp 4618  Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-ss 3140  df-iun 3884  df-rel 4627
This theorem is referenced by:  reluni  4743  eliunxp  4759  opeliunxp2  4760  dfco2  5120  coiun  5130  opeliunxp2f  6229  fisumcom2  11412  fprodcom2fi  11600  reldvg  13699
  Copyright terms: Public domain W3C validator