| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reliun | GIF version | ||
| Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| reliun | ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 3943 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | 1 | releqi 4776 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵}) |
| 3 | df-rel 4700 | . 2 ⊢ (Rel {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V)) | |
| 4 | abss 3270 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 5 | df-rel 4700 | . . . . . 6 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 6 | ssalel 3189 | . . . . . 6 ⊢ (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 7 | 5, 6 | bitri 184 | . . . . 5 ⊢ (Rel 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 8 | 7 | ralbii 2514 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 9 | ralcom4 2799 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 10 | r19.23v 2617 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) | |
| 11 | 10 | albii 1494 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 12 | 8, 9, 11 | 3bitri 206 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ (V × V))) |
| 13 | 4, 12 | bitr4i 187 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ (V × V) ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
| 14 | 2, 3, 13 | 3bitri 206 | 1 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2178 {cab 2193 ∀wral 2486 ∃wrex 2487 Vcvv 2776 ⊆ wss 3174 ∪ ciun 3941 × cxp 4691 Rel wrel 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-iun 3943 df-rel 4700 |
| This theorem is referenced by: reluni 4816 eliunxp 4835 opeliunxp2 4836 dfco2 5201 coiun 5211 opeliunxp2f 6347 fisumcom2 11864 fprodcom2fi 12052 imasaddfnlemg 13261 reldvg 15266 |
| Copyright terms: Public domain | W3C validator |