ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliun GIF version

Theorem reliun 4780
Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
reliun (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)

Proof of Theorem reliun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3914 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21releqi 4742 . 2 (Rel 𝑥𝐴 𝐵 ↔ Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
3 df-rel 4666 . 2 (Rel {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V))
4 abss 3248 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
5 df-rel 4666 . . . . . 6 (Rel 𝐵𝐵 ⊆ (V × V))
6 dfss2 3168 . . . . . 6 (𝐵 ⊆ (V × V) ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
75, 6bitri 184 . . . . 5 (Rel 𝐵 ↔ ∀𝑦(𝑦𝐵𝑦 ∈ (V × V)))
87ralbii 2500 . . . 4 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)))
9 ralcom4 2782 . . . 4 (∀𝑥𝐴𝑦(𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)))
10 r19.23v 2603 . . . . 5 (∀𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ (∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
1110albii 1481 . . . 4 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦 ∈ (V × V)) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
128, 9, 113bitri 206 . . 3 (∀𝑥𝐴 Rel 𝐵 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦 ∈ (V × V)))
134, 12bitr4i 187 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ (V × V) ↔ ∀𝑥𝐴 Rel 𝐵)
142, 3, 133bitri 206 1 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  wss 3153   ciun 3912   × cxp 4657  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914  df-rel 4666
This theorem is referenced by:  reluni  4782  eliunxp  4801  opeliunxp2  4802  dfco2  5165  coiun  5175  opeliunxp2f  6291  fisumcom2  11581  fprodcom2fi  11769  imasaddfnlemg  12897  reldvg  14833
  Copyright terms: Public domain W3C validator