| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliun | GIF version | ||
| Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2791 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 2791 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | rexlimivw 2624 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
| 4 | eleq1 2272 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 5 | 4 | rexbidv 2511 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 6 | df-iun 3946 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 7 | 5, 6 | elab2g 2930 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 8 | 1, 3, 7 | pm5.21nii 708 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 Vcvv 2779 ∪ ciun 3944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-iun 3946 |
| This theorem is referenced by: iuncom 3950 iuncom4 3951 iunconstm 3952 iuniin 3954 iunss1 3955 ss2iun 3959 dfiun2g 3976 ssiun 3986 ssiun2 3987 iunab 3991 iun0 4001 0iun 4002 iunn0m 4005 iunin2 4008 iundif2ss 4010 iindif2m 4012 iunxsng 4020 iunxsngf 4022 iunun 4023 iunxun 4024 iunxiun 4026 iunpwss 4036 disjiun 4057 triun 4174 iunpw 4548 xpiundi 4754 xpiundir 4755 iunxpf 4847 cnvuni 4885 dmiun 4909 dmuni 4910 rniun 5115 dfco2 5204 dfco2a 5205 coiun 5214 fun11iun 5569 imaiun 5857 eluniimadm 5862 opabex3d 6236 opabex3 6237 smoiun 6417 tfrlemi14d 6449 tfr1onlemres 6465 tfrcllemres 6478 wrdval 11041 fsum2dlemstep 11911 fisumcom2 11915 fsumiun 11954 fprod2dlemstep 12099 fprodcom2fi 12103 ennnfonelemrn 12956 ennnfonelemdm 12957 ctiunctlemf 12975 ctiunctlemfo 12976 imasaddfnlemg 13313 lssats2 14343 |
| Copyright terms: Public domain | W3C validator |