Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eliun | GIF version |
Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
2 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | rexlimivw 2579 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
4 | eleq1 2229 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
5 | 4 | rexbidv 2467 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
6 | df-iun 3868 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
7 | 5, 6 | elab2g 2873 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
8 | 1, 3, 7 | pm5.21nii 694 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-iun 3868 |
This theorem is referenced by: iuncom 3872 iuncom4 3873 iunconstm 3874 iuniin 3876 iunss1 3877 ss2iun 3881 dfiun2g 3898 ssiun 3908 ssiun2 3909 iunab 3912 iun0 3922 0iun 3923 iunn0m 3926 iunin2 3929 iundif2ss 3931 iindif2m 3933 iunxsng 3941 iunxsngf 3943 iunun 3944 iunxun 3945 iunxiun 3947 iunpwss 3957 disjiun 3977 triun 4093 iunpw 4458 xpiundi 4662 xpiundir 4663 iunxpf 4752 cnvuni 4790 dmiun 4813 dmuni 4814 rniun 5014 dfco2 5103 dfco2a 5104 coiun 5113 fun11iun 5453 imaiun 5728 eluniimadm 5733 opabex3d 6089 opabex3 6090 smoiun 6269 tfrlemi14d 6301 tfr1onlemres 6317 tfrcllemres 6330 fsum2dlemstep 11375 fisumcom2 11379 fsumiun 11418 fprod2dlemstep 11563 fprodcom2fi 11567 ennnfonelemrn 12352 ennnfonelemdm 12353 ctiunctlemf 12371 ctiunctlemfo 12372 |
Copyright terms: Public domain | W3C validator |