![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliun | GIF version |
Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2749 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
2 | elex 2749 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | rexlimivw 2590 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
4 | eleq1 2240 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
5 | 4 | rexbidv 2478 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
6 | df-iun 3889 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
7 | 5, 6 | elab2g 2885 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
8 | 1, 3, 7 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 Vcvv 2738 ∪ ciun 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-iun 3889 |
This theorem is referenced by: iuncom 3893 iuncom4 3894 iunconstm 3895 iuniin 3897 iunss1 3898 ss2iun 3902 dfiun2g 3919 ssiun 3929 ssiun2 3930 iunab 3934 iun0 3944 0iun 3945 iunn0m 3948 iunin2 3951 iundif2ss 3953 iindif2m 3955 iunxsng 3963 iunxsngf 3965 iunun 3966 iunxun 3967 iunxiun 3969 iunpwss 3979 disjiun 3999 triun 4115 iunpw 4481 xpiundi 4685 xpiundir 4686 iunxpf 4776 cnvuni 4814 dmiun 4837 dmuni 4838 rniun 5040 dfco2 5129 dfco2a 5130 coiun 5139 fun11iun 5483 imaiun 5761 eluniimadm 5766 opabex3d 6122 opabex3 6123 smoiun 6302 tfrlemi14d 6334 tfr1onlemres 6350 tfrcllemres 6363 fsum2dlemstep 11442 fisumcom2 11446 fsumiun 11485 fprod2dlemstep 11630 fprodcom2fi 11634 ennnfonelemrn 12420 ennnfonelemdm 12421 ctiunctlemf 12439 ctiunctlemfo 12440 imasaddfnlemg 12735 |
Copyright terms: Public domain | W3C validator |