| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliun | GIF version | ||
| Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2784 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 2784 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | rexlimivw 2620 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
| 4 | eleq1 2269 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 5 | 4 | rexbidv 2508 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 6 | df-iun 3931 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 7 | 5, 6 | elab2g 2921 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 8 | 1, 3, 7 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 ∪ ciun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-iun 3931 |
| This theorem is referenced by: iuncom 3935 iuncom4 3936 iunconstm 3937 iuniin 3939 iunss1 3940 ss2iun 3944 dfiun2g 3961 ssiun 3971 ssiun2 3972 iunab 3976 iun0 3986 0iun 3987 iunn0m 3990 iunin2 3993 iundif2ss 3995 iindif2m 3997 iunxsng 4005 iunxsngf 4007 iunun 4008 iunxun 4009 iunxiun 4011 iunpwss 4021 disjiun 4042 triun 4159 iunpw 4531 xpiundi 4737 xpiundir 4738 iunxpf 4830 cnvuni 4868 dmiun 4892 dmuni 4893 rniun 5098 dfco2 5187 dfco2a 5188 coiun 5197 fun11iun 5550 imaiun 5836 eluniimadm 5841 opabex3d 6213 opabex3 6214 smoiun 6394 tfrlemi14d 6426 tfr1onlemres 6442 tfrcllemres 6455 wrdval 11004 fsum2dlemstep 11789 fisumcom2 11793 fsumiun 11832 fprod2dlemstep 11977 fprodcom2fi 11981 ennnfonelemrn 12834 ennnfonelemdm 12835 ctiunctlemf 12853 ctiunctlemfo 12854 imasaddfnlemg 13190 lssats2 14220 |
| Copyright terms: Public domain | W3C validator |