![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliun | GIF version |
Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
2 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | rexlimivw 2607 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
4 | eleq1 2256 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
5 | 4 | rexbidv 2495 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
6 | df-iun 3915 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
7 | 5, 6 | elab2g 2908 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
8 | 1, 3, 7 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ∪ ciun 3913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-iun 3915 |
This theorem is referenced by: iuncom 3919 iuncom4 3920 iunconstm 3921 iuniin 3923 iunss1 3924 ss2iun 3928 dfiun2g 3945 ssiun 3955 ssiun2 3956 iunab 3960 iun0 3970 0iun 3971 iunn0m 3974 iunin2 3977 iundif2ss 3979 iindif2m 3981 iunxsng 3989 iunxsngf 3991 iunun 3992 iunxun 3993 iunxiun 3995 iunpwss 4005 disjiun 4025 triun 4141 iunpw 4512 xpiundi 4718 xpiundir 4719 iunxpf 4811 cnvuni 4849 dmiun 4872 dmuni 4873 rniun 5077 dfco2 5166 dfco2a 5167 coiun 5176 fun11iun 5522 imaiun 5804 eluniimadm 5809 opabex3d 6175 opabex3 6176 smoiun 6356 tfrlemi14d 6388 tfr1onlemres 6404 tfrcllemres 6417 wrdval 10920 fsum2dlemstep 11580 fisumcom2 11584 fsumiun 11623 fprod2dlemstep 11768 fprodcom2fi 11772 ennnfonelemrn 12579 ennnfonelemdm 12580 ctiunctlemf 12598 ctiunctlemfo 12599 imasaddfnlemg 12900 lssats2 13913 |
Copyright terms: Public domain | W3C validator |