| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliun | GIF version | ||
| Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | rexlimivw 2644 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
| 4 | eleq1 2292 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 5 | 4 | rexbidv 2531 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 6 | df-iun 3967 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 7 | 5, 6 | elab2g 2950 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 8 | 1, 3, 7 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 Vcvv 2799 ∪ ciun 3965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-iun 3967 |
| This theorem is referenced by: iuncom 3971 iuncom4 3972 iunconstm 3973 iuniin 3975 iunss1 3976 ss2iun 3980 dfiun2g 3997 ssiun 4007 ssiun2 4008 iunab 4012 iun0 4022 0iun 4023 iunn0m 4026 iunin2 4029 iundif2ss 4031 iindif2m 4033 iunxsng 4041 iunxsngf 4043 iunun 4044 iunxun 4045 iunxiun 4047 iunpwss 4057 disjiun 4078 triun 4195 iunpw 4571 xpiundi 4777 xpiundir 4778 iunxpf 4870 cnvuni 4908 dmiun 4932 dmuni 4933 rniun 5139 dfco2 5228 dfco2a 5229 coiun 5238 fun11iun 5595 imaiun 5890 eluniimadm 5895 opabex3d 6272 opabex3 6273 smoiun 6453 tfrlemi14d 6485 tfr1onlemres 6501 tfrcllemres 6514 wrdval 11082 fsum2dlemstep 11953 fisumcom2 11957 fsumiun 11996 fprod2dlemstep 12141 fprodcom2fi 12145 ennnfonelemrn 12998 ennnfonelemdm 12999 ctiunctlemf 13017 ctiunctlemfo 13018 imasaddfnlemg 13355 lssats2 14386 |
| Copyright terms: Public domain | W3C validator |