![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eliun | GIF version |
Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliun | ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 → 𝐴 ∈ V) | |
2 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | rexlimivw 2607 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
4 | eleq1 2256 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
5 | 4 | rexbidv 2495 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
6 | df-iun 3914 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
7 | 5, 6 | elab2g 2907 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
8 | 1, 3, 7 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ∪ ciun 3912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-iun 3914 |
This theorem is referenced by: iuncom 3918 iuncom4 3919 iunconstm 3920 iuniin 3922 iunss1 3923 ss2iun 3927 dfiun2g 3944 ssiun 3954 ssiun2 3955 iunab 3959 iun0 3969 0iun 3970 iunn0m 3973 iunin2 3976 iundif2ss 3978 iindif2m 3980 iunxsng 3988 iunxsngf 3990 iunun 3991 iunxun 3992 iunxiun 3994 iunpwss 4004 disjiun 4024 triun 4140 iunpw 4511 xpiundi 4717 xpiundir 4718 iunxpf 4810 cnvuni 4848 dmiun 4871 dmuni 4872 rniun 5076 dfco2 5165 dfco2a 5166 coiun 5175 fun11iun 5521 imaiun 5803 eluniimadm 5808 opabex3d 6173 opabex3 6174 smoiun 6354 tfrlemi14d 6386 tfr1onlemres 6402 tfrcllemres 6415 wrdval 10917 fsum2dlemstep 11577 fisumcom2 11581 fsumiun 11620 fprod2dlemstep 11765 fprodcom2fi 11769 ennnfonelemrn 12576 ennnfonelemdm 12577 ctiunctlemf 12595 ctiunctlemfo 12596 imasaddfnlemg 12897 lssats2 13910 |
Copyright terms: Public domain | W3C validator |