![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniiun | GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 3823 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 3900 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2211 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 {cab 2173 ∃wrex 2466 ∪ cuni 3821 ∪ ciun 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-rex 2471 df-uni 3822 df-iun 3900 |
This theorem is referenced by: iunpwss 3990 truni 4127 iunpw 4492 reluni 4761 rnuni 5052 imauni 5775 hashuni 11503 tgidm 13845 unicld 13887 tgrest 13940 txbasval 14038 |
Copyright terms: Public domain | W3C validator |