ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiu1 GIF version

Theorem nfiu1 3971
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
Assertion
Ref Expression
nfiu1 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfiu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3943 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
2 nfre1 2551 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2355 . 2 𝑥{𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2347 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2178  {cab 2193  wnfc 2337  wrex 2487   ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-iun 3943
This theorem is referenced by:  ssiun2s  3985  triun  4171  eliunxp  4835  opeliunxp2  4836  opeliunxp2f  6347  ixpf  6830  ctiunctlemfo  12925
  Copyright terms: Public domain W3C validator