ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiu1 GIF version

Theorem nfiu1 3938
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
Assertion
Ref Expression
nfiu1 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfiu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3910 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
2 nfre1 2533 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2337 . 2 𝑥{𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2329 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2160  {cab 2175  wnfc 2319  wrex 2469   ciun 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-iun 3910
This theorem is referenced by:  ssiun2s  3952  triun  4136  eliunxp  4791  opeliunxp2  4792  opeliunxp2f  6278  ixpf  6761  ctiunctlemfo  12570
  Copyright terms: Public domain W3C validator