ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviun GIF version

Theorem cbviun 4002
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
cbviun.1 𝑦𝐵
cbviun.2 𝑥𝐶
cbviun.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5 𝑦𝐵
21nfcri 2366 . . . 4 𝑦 𝑧𝐵
3 cbviun.2 . . . . 5 𝑥𝐶
43nfcri 2366 . . . 4 𝑥 𝑧𝐶
5 cbviun.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2299 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrex 2762 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
87abbii 2345 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
9 df-iun 3967 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
10 df-iun 3967 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
118, 9, 103eqtr4i 2260 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  wnfc 2359  wrex 2509   ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-iun 3967
This theorem is referenced by:  cbviunv  4004  funiunfvdmf  5894  mpomptsx  6349  dmmpossx  6351  fmpox  6352  fsum2dlemstep  11953  fisumcom2  11957  fsumiun  11996  fprod2dlemstep  12141  fprodcom2fi  12145  ctiunctlemf  13017  ctiunctal  13020
  Copyright terms: Public domain W3C validator