Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abrexex2 | GIF version |
Description: Existence of an existentially restricted class abstraction. 𝜑 is normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 6085. (Contributed by NM, 12-Sep-2004.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝜑 | |
2 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
3 | nfs1v 1927 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
4 | 2, 3 | nfrexxy 2505 | . . . 4 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑 |
5 | sbequ12 1759 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
6 | 5 | rexbidv 2467 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑)) |
7 | 1, 4, 6 | cbvab 2290 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
8 | df-clab 2152 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
9 | 8 | rexbii 2473 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑) |
10 | 9 | abbii 2282 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
11 | 7, 10 | eqtr4i 2189 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} |
12 | df-iun 3868 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} | |
13 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
14 | abrexex2.2 | . . . 4 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
15 | 13, 14 | iunex 6091 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
16 | 12, 15 | eqeltrri 2240 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} ∈ V |
17 | 11, 16 | eqeltri 2239 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
Colors of variables: wff set class |
Syntax hints: [wsb 1750 ∈ wcel 2136 {cab 2151 ∃wrex 2445 Vcvv 2726 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: abexssex 6093 abexex 6094 oprabrexex2 6098 ab2rexex 6099 ab2rexex2 6100 |
Copyright terms: Public domain | W3C validator |