| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abrexex2 | GIF version | ||
| Description: Existence of an existentially restricted class abstraction. 𝜑 is normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 6212. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| abrexex2.1 | ⊢ 𝐴 ∈ V |
| abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝜑 | |
| 2 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfs1v 1968 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
| 4 | 2, 3 | nfrexw 2546 | . . . 4 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑 |
| 5 | sbequ12 1795 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
| 6 | 5 | rexbidv 2508 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑)) |
| 7 | 1, 4, 6 | cbvab 2330 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
| 8 | df-clab 2193 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 9 | 8 | rexbii 2514 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑) |
| 10 | 9 | abbii 2322 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
| 11 | 7, 10 | eqtr4i 2230 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} |
| 12 | df-iun 3932 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} | |
| 13 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 14 | abrexex2.2 | . . . 4 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 15 | 13, 14 | iunex 6218 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
| 16 | 12, 15 | eqeltrri 2280 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} ∈ V |
| 17 | 11, 16 | eqeltri 2279 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: [wsb 1786 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 ∪ ciun 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 |
| This theorem is referenced by: abexssex 6220 abexex 6221 oprabrexex2 6225 ab2rexex 6226 ab2rexex2 6227 |
| Copyright terms: Public domain | W3C validator |