| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abrexex2 | GIF version | ||
| Description: Existence of an existentially restricted class abstraction. 𝜑 is normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 6268. (Contributed by NM, 12-Sep-2004.) |
| Ref | Expression |
|---|---|
| abrexex2.1 | ⊢ 𝐴 ∈ V |
| abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abrexex2 | ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝜑 | |
| 2 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfs1v 1990 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
| 4 | 2, 3 | nfrexw 2569 | . . . 4 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑 |
| 5 | sbequ12 1817 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
| 6 | 5 | rexbidv 2531 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑)) |
| 7 | 1, 4, 6 | cbvab 2353 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
| 8 | df-clab 2216 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 9 | 8 | rexbii 2537 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑) |
| 10 | 9 | abbii 2345 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
| 11 | 7, 10 | eqtr4i 2253 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} |
| 12 | df-iun 3967 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} | |
| 13 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 14 | abrexex2.2 | . . . 4 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 15 | 13, 14 | iunex 6274 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V |
| 16 | 12, 15 | eqeltrri 2303 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} ∈ V |
| 17 | 11, 16 | eqeltri 2302 | 1 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: [wsb 1808 ∈ wcel 2200 {cab 2215 ∃wrex 2509 Vcvv 2799 ∪ ciun 3965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: abexssex 6276 abexex 6277 oprabrexex2 6281 ab2rexex 6282 ab2rexex2 6283 |
| Copyright terms: Public domain | W3C validator |