ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex2 GIF version

Theorem abrexex2 5895
Description: Existence of an existentially restricted class abstraction. 𝜑 is normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 5888. (Contributed by NM, 12-Sep-2004.)
Hypotheses
Ref Expression
abrexex2.1 𝐴 ∈ V
abrexex2.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abrexex2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1466 . . . 4 𝑧𝑥𝐴 𝜑
2 nfcv 2228 . . . . 5 𝑦𝐴
3 nfs1v 1863 . . . . 5 𝑦[𝑧 / 𝑦]𝜑
42, 3nfrexxy 2415 . . . 4 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
5 sbequ12 1701 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
65rexbidv 2381 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
71, 4, 6cbvab 2210 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
8 df-clab 2075 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
98rexbii 2385 . . . 4 (∃𝑥𝐴 𝑧 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑)
109abbii 2203 . . 3 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
117, 10eqtr4i 2111 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
12 df-iun 3732 . . 3 𝑥𝐴 {𝑦𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
13 abrexex2.1 . . . 4 𝐴 ∈ V
14 abrexex2.2 . . . 4 {𝑦𝜑} ∈ V
1513, 14iunex 5894 . . 3 𝑥𝐴 {𝑦𝜑} ∈ V
1612, 15eqeltrri 2161 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} ∈ V
1711, 16eqeltri 2160 1 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1438  [wsb 1692  {cab 2074  wrex 2360  Vcvv 2619   ciun 3730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023
This theorem is referenced by:  abexssex  5896  abexex  5897  oprabrexex2  5901  ab2rexex  5902  ab2rexex2  5903
  Copyright terms: Public domain W3C validator