![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfiunxy | GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) |
Ref | Expression |
---|---|
nfiunxy.1 | ⊢ Ⅎ𝑦𝐴 |
nfiunxy.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiunxy | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 3762 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiunxy.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiunxy.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2234 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfrexxy 2431 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfab 2245 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2237 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1448 {cab 2086 Ⅎwnfc 2227 ∃wrex 2376 ∪ ciun 3760 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rex 2381 df-iun 3762 |
This theorem is referenced by: iunab 3806 |
Copyright terms: Public domain | W3C validator |