ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiunxy GIF version

Theorem nfiunxy 3970
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunxy.1 𝑦𝐴
nfiunxy.2 𝑦𝐵
Assertion
Ref Expression
nfiunxy 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiunxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3946 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiunxy.1 . . . 4 𝑦𝐴
3 nfiunxy.2 . . . . 5 𝑦𝐵
43nfcri 2346 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 2549 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2357 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2349 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2180  {cab 2195  wnfc 2339  wrex 2489   ciun 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-iun 3946
This theorem is referenced by:  iunab  3991
  Copyright terms: Public domain W3C validator