ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrng GIF version

Theorem fnasrng 5739
Description: A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
fnasrng (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩))

Proof of Theorem fnasrng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfmptg 5738 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
2 eqid 2193 . . . . 5 (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
32rnmpt 4911 . . . 4 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
4 velsn 3636 . . . . . 6 (𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ 𝑦 = ⟨𝑥, 𝐵⟩)
54rexbii 2501 . . . . 5 (∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩)
65abbii 2309 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
73, 6eqtr4i 2217 . . 3 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
8 df-iun 3915 . . 3 𝑥𝐴 {⟨𝑥, 𝐵⟩} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
97, 8eqtr4i 2217 . 2 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
101, 9eqtr4di 2244 1 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  {csn 3619  cop 3622   ciun 3913  cmpt 4091  ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
This theorem is referenced by:  resfunexg  5780
  Copyright terms: Public domain W3C validator