![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnasrng | GIF version |
Description: A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.) |
Ref | Expression |
---|---|
fnasrng | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmptg 5694 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) | |
2 | eqid 2177 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | |
3 | 2 | rnmpt 4874 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
4 | velsn 3609 | . . . . . 6 ⊢ (𝑦 ∈ {〈𝑥, 𝐵〉} ↔ 𝑦 = 〈𝑥, 𝐵〉) | |
5 | 4 | rexbii 2484 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉) |
6 | 5 | abbii 2293 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
7 | 3, 6 | eqtr4i 2201 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} |
8 | df-iun 3888 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} | |
9 | 7, 8 | eqtr4i 2201 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
10 | 1, 9 | eqtr4di 2228 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 {csn 3592 〈cop 3595 ∪ ciun 3886 ↦ cmpt 4063 ran crn 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2739 df-sbc 2963 df-csb 3058 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 |
This theorem is referenced by: resfunexg 5736 |
Copyright terms: Public domain | W3C validator |