ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrng GIF version

Theorem fnasrng 5767
Description: A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
fnasrng (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩))

Proof of Theorem fnasrng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfmptg 5766 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
2 eqid 2206 . . . . 5 (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
32rnmpt 4931 . . . 4 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
4 velsn 3651 . . . . . 6 (𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ 𝑦 = ⟨𝑥, 𝐵⟩)
54rexbii 2514 . . . . 5 (∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩)
65abbii 2322 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
73, 6eqtr4i 2230 . . 3 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
8 df-iun 3931 . . 3 𝑥𝐴 {⟨𝑥, 𝐵⟩} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
97, 8eqtr4i 2230 . 2 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
101, 9eqtr4di 2257 1 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  {csn 3634  cop 3637   ciun 3929  cmpt 4109  ran crn 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283
This theorem is referenced by:  resfunexg  5812
  Copyright terms: Public domain W3C validator