| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiunv2 | GIF version | ||
| Description: Define double indexed union. (Contributed by FL, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| dfiunv2 | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 3967 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}) |
| 3 | 2 | iuneq2i 3983 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} |
| 4 | df-iun 3967 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} | |
| 5 | vex 2802 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 6 | eleq1 2292 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
| 7 | 6 | rexbidv 2531 | . . . . 5 ⊢ (𝑤 = 𝑧 → (∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) |
| 8 | 5, 7 | elab 2947 | . . . 4 ⊢ (𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 9 | 8 | rexbii 2537 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 10 | 9 | abbii 2345 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
| 11 | 3, 4, 10 | 3eqtri 2254 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 ∪ ciun 3965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-iun 3967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |