![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunopab | GIF version |
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
iunopab | ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 4288 | . . . . 5 ⊢ (𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | 1 | rexbii 2501 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
3 | rexcom4 2783 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
4 | rexcom4 2783 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | r19.42v 2651 | . . . . . . . 8 ⊢ (∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) | |
6 | 5 | exbii 1616 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
7 | 4, 6 | bitri 184 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
8 | 7 | exbii 1616 | . . . . 5 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
9 | 3, 8 | bitri 184 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
10 | 2, 9 | bitri 184 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
11 | 10 | abbii 2309 | . 2 ⊢ {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
12 | df-iun 3914 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}} | |
13 | df-opab 4091 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)} | |
14 | 11, 12, 13 | 3eqtr4i 2224 | 1 ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∃wrex 2473 〈cop 3621 ∪ ciun 3912 {copab 4089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-iun 3914 df-opab 4091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |