| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunopab | GIF version | ||
| Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| iunopab | ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 4292 | . . . . 5 ⊢ (𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 2 | 1 | rexbii 2504 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 3 | rexcom4 2786 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 4 | rexcom4 2786 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | r19.42v 2654 | . . . . . . . 8 ⊢ (∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) | |
| 6 | 5 | exbii 1619 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 7 | 4, 6 | bitri 184 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 8 | 7 | exbii 1619 | . . . . 5 ⊢ (∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 9 | 3, 8 | bitri 184 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 10 | 2, 9 | bitri 184 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
| 11 | 10 | abbii 2312 | . 2 ⊢ {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
| 12 | df-iun 3918 | . 2 ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}} | |
| 13 | df-opab 4095 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑧 ∈ 𝐴 𝜑)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2227 | 1 ⊢ ∪ 𝑧 ∈ 𝐴 {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∃wrex 2476 〈cop 3625 ∪ ciun 3916 {copab 4093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iun 3918 df-opab 4095 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |