ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab GIF version

Theorem iunopab 4327
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem iunopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elopab 4303 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21rexbii 2512 . . . 4 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 rexcom4 2794 . . . . 5 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 rexcom4 2794 . . . . . . 7 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 r19.42v 2662 . . . . . . . 8 (∃𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
65exbii 1627 . . . . . . 7 (∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
74, 6bitri 184 . . . . . 6 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
87exbii 1627 . . . . 5 (∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
93, 8bitri 184 . . . 4 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
102, 9bitri 184 . . 3 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
1110abbii 2320 . 2 {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
12 df-iun 3928 . 2 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}}
13 df-opab 4105 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
1411, 12, 133eqtr4i 2235 1 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wrex 2484  cop 3635   ciun 3926  {copab 4103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-iun 3928  df-opab 4105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator