ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab GIF version

Theorem iunopab 4328
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem iunopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elopab 4304 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21rexbii 2513 . . . 4 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 rexcom4 2795 . . . . 5 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 rexcom4 2795 . . . . . . 7 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 r19.42v 2663 . . . . . . . 8 (∃𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
65exbii 1628 . . . . . . 7 (∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
74, 6bitri 184 . . . . . 6 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
87exbii 1628 . . . . 5 (∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
93, 8bitri 184 . . . 4 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
102, 9bitri 184 . . 3 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
1110abbii 2321 . 2 {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
12 df-iun 3929 . 2 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}}
13 df-opab 4106 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
1411, 12, 133eqtr4i 2236 1 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wrex 2485  cop 3636   ciun 3927  {copab 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-iun 3929  df-opab 4106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator