ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab GIF version

Theorem iunopab 4266
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem iunopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elopab 4243 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
21rexbii 2477 . . . 4 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 rexcom4 2753 . . . . 5 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 rexcom4 2753 . . . . . . 7 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 r19.42v 2627 . . . . . . . 8 (∃𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
65exbii 1598 . . . . . . 7 (∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
74, 6bitri 183 . . . . . 6 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
87exbii 1598 . . . . 5 (∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
93, 8bitri 183 . . . 4 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
102, 9bitri 183 . . 3 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
1110abbii 2286 . 2 {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
12 df-iun 3875 . 2 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}}
13 df-opab 4051 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
1411, 12, 133eqtr4i 2201 1 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wrex 2449  cop 3586   ciun 3873  {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-iun 3875  df-opab 4051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator