| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnasrn | GIF version | ||
| Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfmpt.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fnasrn | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpt.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dfmpt 5811 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 3 | eqid 2229 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) | |
| 4 | 3 | rnmpt 4971 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
| 5 | velsn 3683 | . . . . . 6 ⊢ (𝑦 ∈ {〈𝑥, 𝐵〉} ↔ 𝑦 = 〈𝑥, 𝐵〉) | |
| 6 | 5 | rexbii 2537 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉) |
| 7 | 6 | abbii 2345 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 〈𝑥, 𝐵〉} |
| 8 | 4, 7 | eqtr4i 2253 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} |
| 9 | df-iun 3966 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {〈𝑥, 𝐵〉}} | |
| 10 | 8, 9 | eqtr4i 2253 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 11 | 2, 10 | eqtr4i 2253 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 Vcvv 2799 {csn 3666 〈cop 3669 ∪ ciun 3964 ↦ cmpt 4144 ran crn 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: idref 5879 |
| Copyright terms: Public domain | W3C validator |