ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninfeq GIF version

Theorem nnnninfeq 7083
Description: Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfeq.p (𝜑𝑃 ∈ ℕ)
nnnninfeq.n (𝜑𝑁 ∈ ω)
nnnninfeq.1 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
nnnninfeq.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfeq (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁   𝑥,𝑁   𝑥,𝑃   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑖)

Proof of Theorem nnnninfeq
Dummy variables 𝑗 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfeq.p . . . 4 (𝜑𝑃 ∈ ℕ)
2 nninff 7078 . . . 4 (𝑃 ∈ ℕ𝑃:ω⟶2o)
31, 2syl 14 . . 3 (𝜑𝑃:ω⟶2o)
43ffnd 5332 . 2 (𝜑𝑃 Fn ω)
5 1lt2o 6401 . . . . . 6 1o ∈ 2o
65a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
7 0lt2o 6400 . . . . . 6 ∅ ∈ 2o
87a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
9 simpr 109 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
10 nnnninfeq.n . . . . . . 7 (𝜑𝑁 ∈ ω)
1110adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6459 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
139, 11, 12syl2anc 409 . . . . 5 ((𝜑𝑖 ∈ ω) → DECID 𝑖𝑁)
146, 8, 13ifcldcd 3550 . . . 4 ((𝜑𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
1514ralrimiva 2537 . . 3 (𝜑 → ∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o)
16 eqid 2164 . . . 4 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
1716fnmpt 5308 . . 3 (∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
1815, 17syl 14 . 2 (𝜑 → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
19 fveq2 5480 . . . . . . 7 (𝑤 = ∅ → (𝑃𝑤) = (𝑃‘∅))
20 eleq1 2227 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ∈ 𝑁))
2120ifbid 3536 . . . . . . 7 (𝑤 = ∅ → if(𝑤𝑁, 1o, ∅) = if(∅ ∈ 𝑁, 1o, ∅))
2219, 21eqeq12d 2179 . . . . . 6 (𝑤 = ∅ → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅)))
2322imbi2d 229 . . . . 5 (𝑤 = ∅ → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))))
24 fveq2 5480 . . . . . . 7 (𝑤 = 𝑘 → (𝑃𝑤) = (𝑃𝑘))
25 eleq1w 2225 . . . . . . . 8 (𝑤 = 𝑘 → (𝑤𝑁𝑘𝑁))
2625ifbid 3536 . . . . . . 7 (𝑤 = 𝑘 → if(𝑤𝑁, 1o, ∅) = if(𝑘𝑁, 1o, ∅))
2724, 26eqeq12d 2179 . . . . . 6 (𝑤 = 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)))
2827imbi2d 229 . . . . 5 (𝑤 = 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))))
29 fveq2 5480 . . . . . . 7 (𝑤 = suc 𝑘 → (𝑃𝑤) = (𝑃‘suc 𝑘))
30 eleq1 2227 . . . . . . . 8 (𝑤 = suc 𝑘 → (𝑤𝑁 ↔ suc 𝑘𝑁))
3130ifbid 3536 . . . . . . 7 (𝑤 = suc 𝑘 → if(𝑤𝑁, 1o, ∅) = if(suc 𝑘𝑁, 1o, ∅))
3229, 31eqeq12d 2179 . . . . . 6 (𝑤 = suc 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅)))
3332imbi2d 229 . . . . 5 (𝑤 = suc 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
34 fveq2 5480 . . . . . . 7 (𝑤 = 𝑗 → (𝑃𝑤) = (𝑃𝑗))
35 eleq1w 2225 . . . . . . . 8 (𝑤 = 𝑗 → (𝑤𝑁𝑗𝑁))
3635ifbid 3536 . . . . . . 7 (𝑤 = 𝑗 → if(𝑤𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
3734, 36eqeq12d 2179 . . . . . 6 (𝑤 = 𝑗 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
3837imbi2d 229 . . . . 5 (𝑤 = 𝑗 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))))
39 noel 3408 . . . . . . . . 9 ¬ ∅ ∈ ∅
40 simpr 109 . . . . . . . . . 10 ((𝜑𝑁 = ∅) → 𝑁 = ∅)
4140eleq2d 2234 . . . . . . . . 9 ((𝜑𝑁 = ∅) → (∅ ∈ 𝑁 ↔ ∅ ∈ ∅))
4239, 41mtbiri 665 . . . . . . . 8 ((𝜑𝑁 = ∅) → ¬ ∅ ∈ 𝑁)
4342iffalsed 3525 . . . . . . 7 ((𝜑𝑁 = ∅) → if(∅ ∈ 𝑁, 1o, ∅) = ∅)
44 nnnninfeq.0 . . . . . . . 8 (𝜑 → (𝑃𝑁) = ∅)
4544adantr 274 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = ∅)
4640fveq2d 5484 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = (𝑃‘∅))
4743, 45, 463eqtr2rd 2204 . . . . . 6 ((𝜑𝑁 = ∅) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
48 fveq2 5480 . . . . . . . . 9 (𝑥 = ∅ → (𝑃𝑥) = (𝑃‘∅))
4948eqeq1d 2173 . . . . . . . 8 (𝑥 = ∅ → ((𝑃𝑥) = 1o ↔ (𝑃‘∅) = 1o))
50 nnnninfeq.1 . . . . . . . . 9 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
5150adantr 274 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
52 simpr 109 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∅ ∈ 𝑁)
5349, 51, 52rspcdva 2830 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = 1o)
5452iftrued 3522 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → if(∅ ∈ 𝑁, 1o, ∅) = 1o)
5553, 54eqtr4d 2200 . . . . . 6 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
56 0elnn 4590 . . . . . . 7 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5710, 56syl 14 . . . . . 6 (𝜑 → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5847, 55, 57mpjaodan 788 . . . . 5 (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
59 fveq2 5480 . . . . . . . . . . 11 (𝑥 = suc 𝑘 → (𝑃𝑥) = (𝑃‘suc 𝑘))
6059eqeq1d 2173 . . . . . . . . . 10 (𝑥 = suc 𝑘 → ((𝑃𝑥) = 1o ↔ (𝑃‘suc 𝑘) = 1o))
6150ad3antlr 485 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
62 simpr 109 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
6360, 61, 62rspcdva 2830 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = 1o)
6462iftrued 3522 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → if(suc 𝑘𝑁, 1o, ∅) = 1o)
6563, 64eqtr4d 2200 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
6644ad3antlr 485 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃𝑁) = ∅)
67 simpr 109 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → suc 𝑘 = 𝑁)
6867fveq2d 5484 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = (𝑃𝑁))
6910ad2antlr 481 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → 𝑁 ∈ ω)
70 nnord 4583 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
71 ordirr 4513 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
7269, 70, 713syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → ¬ 𝑁𝑁)
7372adantr 274 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ 𝑁𝑁)
7467, 73eqneltrd 2260 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ suc 𝑘𝑁)
7574iffalsed 3525 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
7666, 68, 753eqtr4d 2207 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
77 suceq 4374 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
7877fveq2d 5484 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃‘suc 𝑗) = (𝑃‘suc 𝑘))
79 fveq2 5480 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃𝑗) = (𝑃𝑘))
8078, 79sseq12d 3168 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑃‘suc 𝑗) ⊆ (𝑃𝑗) ↔ (𝑃‘suc 𝑘) ⊆ (𝑃𝑘)))
811ad3antlr 485 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑃 ∈ ℕ)
82 fveq1 5479 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗))
83 fveq1 5479 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓𝑗) = (𝑃𝑗))
8482, 83sseq12d 3168 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8584ralbidv 2464 . . . . . . . . . . . . . . 15 (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
86 df-nninf 7076 . . . . . . . . . . . . . . 15 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
8785, 86elrab2 2880 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ ↔ (𝑃 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8887simprbi 273 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
8981, 88syl 14 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
90 simplll 523 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑘 ∈ ω)
9180, 89, 90rspcdva 2830 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ (𝑃𝑘))
92 simplr 520 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))
93 simpr 109 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ suc 𝑘)
94 nnord 4583 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ω → Ord 𝑘)
95 ordtr 4350 . . . . . . . . . . . . . . . 16 (Ord 𝑘 → Tr 𝑘)
96 trsucss 4395 . . . . . . . . . . . . . . . 16 (Tr 𝑘 → (𝑁 ∈ suc 𝑘𝑁𝑘))
9794, 95, 963syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → (𝑁 ∈ suc 𝑘𝑁𝑘))
9890, 93, 97sylc 62 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁𝑘)
9969adantr 274 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ ω)
100 nntri1 6455 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 𝑘 ∈ ω) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10199, 90, 100syl2anc 409 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10298, 101mpbid 146 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ 𝑘𝑁)
103102iffalsed 3525 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(𝑘𝑁, 1o, ∅) = ∅)
10492, 103eqtrd 2197 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = ∅)
10591, 104sseqtrd 3175 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ ∅)
106 ss0 3444 . . . . . . . . . 10 ((𝑃‘suc 𝑘) ⊆ ∅ → (𝑃‘suc 𝑘) = ∅)
107105, 106syl 14 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = ∅)
108 ordn2lp 4516 . . . . . . . . . . . 12 (Ord 𝑁 → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
10999, 70, 1083syl 17 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
110 simplr 520 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → 𝑁 ∈ suc 𝑘)
111 simpr 109 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
112110, 111jca 304 . . . . . . . . . . 11 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
113109, 112mtand 655 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ suc 𝑘𝑁)
114113iffalsed 3525 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
115107, 114eqtr4d 2200 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
116 peano2 4566 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
117116ad2antrr 480 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → suc 𝑘 ∈ ω)
118 nntri3or 6452 . . . . . . . . 9 ((suc 𝑘 ∈ ω ∧ 𝑁 ∈ ω) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
119117, 69, 118syl2anc 409 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
12065, 76, 115, 119mpjao3dan 1296 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
121120exp31 362 . . . . . 6 (𝑘 ∈ ω → (𝜑 → ((𝑃𝑘) = if(𝑘𝑁, 1o, ∅) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
122121a2d 26 . . . . 5 (𝑘 ∈ ω → ((𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
12323, 28, 33, 38, 58, 122finds 4571 . . . 4 (𝑗 ∈ ω → (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
124123impcom 124 . . 3 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))
125 simpr 109 . . . 4 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
1265a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → 1o ∈ 2o)
1277a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → ∅ ∈ 2o)
12810adantr 274 . . . . . 6 ((𝜑𝑗 ∈ ω) → 𝑁 ∈ ω)
129 nndcel 6459 . . . . . 6 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
130125, 128, 129syl2anc 409 . . . . 5 ((𝜑𝑗 ∈ ω) → DECID 𝑗𝑁)
131126, 127, 130ifcldcd 3550 . . . 4 ((𝜑𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
132 eleq1w 2225 . . . . . 6 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
133132ifbid 3536 . . . . 5 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
134133, 16fvmptg 5556 . . . 4 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
135125, 131, 134syl2anc 409 . . 3 ((𝜑𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
136124, 135eqtr4d 2200 . 2 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
1374, 18, 136eqfnfvd 5580 1 (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3o 966   = wceq 1342  wcel 2135  wral 2442  wss 3111  c0 3404  ifcif 3515  cmpt 4037  Tr wtr 4074  Ord word 4334  suc csuc 4337  ωcom 4561   Fn wfn 5177  wf 5178  cfv 5182  (class class class)co 5836  1oc1o 6368  2oc2o 6369  𝑚 cmap 6605  xnninf 7075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1o 6375  df-2o 6376  df-map 6607  df-nninf 7076
This theorem is referenced by:  nnnninfeq2  7084  nninfisollem0  7085  nninfalllem1  13722  nninfsellemeq  13728
  Copyright terms: Public domain W3C validator