ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninfeq GIF version

Theorem nnnninfeq 7291
Description: Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfeq.p (𝜑𝑃 ∈ ℕ)
nnnninfeq.n (𝜑𝑁 ∈ ω)
nnnninfeq.1 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
nnnninfeq.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfeq (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁   𝑥,𝑁   𝑥,𝑃   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑖)

Proof of Theorem nnnninfeq
Dummy variables 𝑗 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfeq.p . . . 4 (𝜑𝑃 ∈ ℕ)
2 nninff 7285 . . . 4 (𝑃 ∈ ℕ𝑃:ω⟶2o)
31, 2syl 14 . . 3 (𝜑𝑃:ω⟶2o)
43ffnd 5473 . 2 (𝜑𝑃 Fn ω)
5 1lt2o 6586 . . . . . 6 1o ∈ 2o
65a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
7 0lt2o 6585 . . . . . 6 ∅ ∈ 2o
87a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
9 simpr 110 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
10 nnnninfeq.n . . . . . . 7 (𝜑𝑁 ∈ ω)
1110adantr 276 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6644 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
139, 11, 12syl2anc 411 . . . . 5 ((𝜑𝑖 ∈ ω) → DECID 𝑖𝑁)
146, 8, 13ifcldcd 3640 . . . 4 ((𝜑𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
1514ralrimiva 2603 . . 3 (𝜑 → ∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o)
16 eqid 2229 . . . 4 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
1716fnmpt 5449 . . 3 (∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
1815, 17syl 14 . 2 (𝜑 → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
19 fveq2 5626 . . . . . . 7 (𝑤 = ∅ → (𝑃𝑤) = (𝑃‘∅))
20 eleq1 2292 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ∈ 𝑁))
2120ifbid 3624 . . . . . . 7 (𝑤 = ∅ → if(𝑤𝑁, 1o, ∅) = if(∅ ∈ 𝑁, 1o, ∅))
2219, 21eqeq12d 2244 . . . . . 6 (𝑤 = ∅ → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅)))
2322imbi2d 230 . . . . 5 (𝑤 = ∅ → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))))
24 fveq2 5626 . . . . . . 7 (𝑤 = 𝑘 → (𝑃𝑤) = (𝑃𝑘))
25 eleq1w 2290 . . . . . . . 8 (𝑤 = 𝑘 → (𝑤𝑁𝑘𝑁))
2625ifbid 3624 . . . . . . 7 (𝑤 = 𝑘 → if(𝑤𝑁, 1o, ∅) = if(𝑘𝑁, 1o, ∅))
2724, 26eqeq12d 2244 . . . . . 6 (𝑤 = 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)))
2827imbi2d 230 . . . . 5 (𝑤 = 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))))
29 fveq2 5626 . . . . . . 7 (𝑤 = suc 𝑘 → (𝑃𝑤) = (𝑃‘suc 𝑘))
30 eleq1 2292 . . . . . . . 8 (𝑤 = suc 𝑘 → (𝑤𝑁 ↔ suc 𝑘𝑁))
3130ifbid 3624 . . . . . . 7 (𝑤 = suc 𝑘 → if(𝑤𝑁, 1o, ∅) = if(suc 𝑘𝑁, 1o, ∅))
3229, 31eqeq12d 2244 . . . . . 6 (𝑤 = suc 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅)))
3332imbi2d 230 . . . . 5 (𝑤 = suc 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
34 fveq2 5626 . . . . . . 7 (𝑤 = 𝑗 → (𝑃𝑤) = (𝑃𝑗))
35 eleq1w 2290 . . . . . . . 8 (𝑤 = 𝑗 → (𝑤𝑁𝑗𝑁))
3635ifbid 3624 . . . . . . 7 (𝑤 = 𝑗 → if(𝑤𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
3734, 36eqeq12d 2244 . . . . . 6 (𝑤 = 𝑗 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
3837imbi2d 230 . . . . 5 (𝑤 = 𝑗 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))))
39 noel 3495 . . . . . . . . 9 ¬ ∅ ∈ ∅
40 simpr 110 . . . . . . . . . 10 ((𝜑𝑁 = ∅) → 𝑁 = ∅)
4140eleq2d 2299 . . . . . . . . 9 ((𝜑𝑁 = ∅) → (∅ ∈ 𝑁 ↔ ∅ ∈ ∅))
4239, 41mtbiri 679 . . . . . . . 8 ((𝜑𝑁 = ∅) → ¬ ∅ ∈ 𝑁)
4342iffalsed 3612 . . . . . . 7 ((𝜑𝑁 = ∅) → if(∅ ∈ 𝑁, 1o, ∅) = ∅)
44 nnnninfeq.0 . . . . . . . 8 (𝜑 → (𝑃𝑁) = ∅)
4544adantr 276 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = ∅)
4640fveq2d 5630 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = (𝑃‘∅))
4743, 45, 463eqtr2rd 2269 . . . . . 6 ((𝜑𝑁 = ∅) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
48 fveq2 5626 . . . . . . . . 9 (𝑥 = ∅ → (𝑃𝑥) = (𝑃‘∅))
4948eqeq1d 2238 . . . . . . . 8 (𝑥 = ∅ → ((𝑃𝑥) = 1o ↔ (𝑃‘∅) = 1o))
50 nnnninfeq.1 . . . . . . . . 9 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
5150adantr 276 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
52 simpr 110 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∅ ∈ 𝑁)
5349, 51, 52rspcdva 2912 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = 1o)
5452iftrued 3609 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → if(∅ ∈ 𝑁, 1o, ∅) = 1o)
5553, 54eqtr4d 2265 . . . . . 6 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
56 0elnn 4710 . . . . . . 7 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5710, 56syl 14 . . . . . 6 (𝜑 → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5847, 55, 57mpjaodan 803 . . . . 5 (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
59 fveq2 5626 . . . . . . . . . . 11 (𝑥 = suc 𝑘 → (𝑃𝑥) = (𝑃‘suc 𝑘))
6059eqeq1d 2238 . . . . . . . . . 10 (𝑥 = suc 𝑘 → ((𝑃𝑥) = 1o ↔ (𝑃‘suc 𝑘) = 1o))
6150ad3antlr 493 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
62 simpr 110 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
6360, 61, 62rspcdva 2912 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = 1o)
6462iftrued 3609 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → if(suc 𝑘𝑁, 1o, ∅) = 1o)
6563, 64eqtr4d 2265 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
6644ad3antlr 493 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃𝑁) = ∅)
67 simpr 110 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → suc 𝑘 = 𝑁)
6867fveq2d 5630 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = (𝑃𝑁))
6910ad2antlr 489 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → 𝑁 ∈ ω)
70 nnord 4703 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
71 ordirr 4633 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
7269, 70, 713syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → ¬ 𝑁𝑁)
7372adantr 276 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ 𝑁𝑁)
7467, 73eqneltrd 2325 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ suc 𝑘𝑁)
7574iffalsed 3612 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
7666, 68, 753eqtr4d 2272 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
77 suceq 4492 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
7877fveq2d 5630 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃‘suc 𝑗) = (𝑃‘suc 𝑘))
79 fveq2 5626 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃𝑗) = (𝑃𝑘))
8078, 79sseq12d 3255 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑃‘suc 𝑗) ⊆ (𝑃𝑗) ↔ (𝑃‘suc 𝑘) ⊆ (𝑃𝑘)))
811ad3antlr 493 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑃 ∈ ℕ)
82 fveq1 5625 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗))
83 fveq1 5625 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓𝑗) = (𝑃𝑗))
8482, 83sseq12d 3255 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8584ralbidv 2530 . . . . . . . . . . . . . . 15 (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
86 df-nninf 7283 . . . . . . . . . . . . . . 15 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
8785, 86elrab2 2962 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ ↔ (𝑃 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8887simprbi 275 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
8981, 88syl 14 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
90 simplll 533 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑘 ∈ ω)
9180, 89, 90rspcdva 2912 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ (𝑃𝑘))
92 simplr 528 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))
93 simpr 110 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ suc 𝑘)
94 nnord 4703 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ω → Ord 𝑘)
95 ordtr 4468 . . . . . . . . . . . . . . . 16 (Ord 𝑘 → Tr 𝑘)
96 trsucss 4513 . . . . . . . . . . . . . . . 16 (Tr 𝑘 → (𝑁 ∈ suc 𝑘𝑁𝑘))
9794, 95, 963syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → (𝑁 ∈ suc 𝑘𝑁𝑘))
9890, 93, 97sylc 62 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁𝑘)
9969adantr 276 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ ω)
100 nntri1 6640 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 𝑘 ∈ ω) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10199, 90, 100syl2anc 411 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10298, 101mpbid 147 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ 𝑘𝑁)
103102iffalsed 3612 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(𝑘𝑁, 1o, ∅) = ∅)
10492, 103eqtrd 2262 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = ∅)
10591, 104sseqtrd 3262 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ ∅)
106 ss0 3532 . . . . . . . . . 10 ((𝑃‘suc 𝑘) ⊆ ∅ → (𝑃‘suc 𝑘) = ∅)
107105, 106syl 14 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = ∅)
108 ordn2lp 4636 . . . . . . . . . . . 12 (Ord 𝑁 → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
10999, 70, 1083syl 17 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
110 simplr 528 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → 𝑁 ∈ suc 𝑘)
111 simpr 110 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
112110, 111jca 306 . . . . . . . . . . 11 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
113109, 112mtand 669 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ suc 𝑘𝑁)
114113iffalsed 3612 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
115107, 114eqtr4d 2265 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
116 peano2 4686 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
117116ad2antrr 488 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → suc 𝑘 ∈ ω)
118 nntri3or 6637 . . . . . . . . 9 ((suc 𝑘 ∈ ω ∧ 𝑁 ∈ ω) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
119117, 69, 118syl2anc 411 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
12065, 76, 115, 119mpjao3dan 1341 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
121120exp31 364 . . . . . 6 (𝑘 ∈ ω → (𝜑 → ((𝑃𝑘) = if(𝑘𝑁, 1o, ∅) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
122121a2d 26 . . . . 5 (𝑘 ∈ ω → ((𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
12323, 28, 33, 38, 58, 122finds 4691 . . . 4 (𝑗 ∈ ω → (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
124123impcom 125 . . 3 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))
125 simpr 110 . . . 4 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
1265a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → 1o ∈ 2o)
1277a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → ∅ ∈ 2o)
12810adantr 276 . . . . . 6 ((𝜑𝑗 ∈ ω) → 𝑁 ∈ ω)
129 nndcel 6644 . . . . . 6 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
130125, 128, 129syl2anc 411 . . . . 5 ((𝜑𝑗 ∈ ω) → DECID 𝑗𝑁)
131126, 127, 130ifcldcd 3640 . . . 4 ((𝜑𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
132 eleq1w 2290 . . . . . 6 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
133132ifbid 3624 . . . . 5 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
134133, 16fvmptg 5709 . . . 4 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
135125, 131, 134syl2anc 411 . . 3 ((𝜑𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
136124, 135eqtr4d 2265 . 2 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
1374, 18, 136eqfnfvd 5734 1 (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3o 1001   = wceq 1395  wcel 2200  wral 2508  wss 3197  c0 3491  ifcif 3602  cmpt 4144  Tr wtr 4181  Ord word 4452  suc csuc 4455  ωcom 4681   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  1oc1o 6553  2oc2o 6554  𝑚 cmap 6793  xnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-nninf 7283
This theorem is referenced by:  nnnninfeq2  7292  nninfisollem0  7293  nninfalllem1  16333  nninfsellemeq  16339
  Copyright terms: Public domain W3C validator