Step | Hyp | Ref
| Expression |
1 | | nnnninfeq.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈
ℕ∞) |
2 | | nninff 7087 |
. . . 4
⊢ (𝑃 ∈
ℕ∞ → 𝑃:ω⟶2o) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → 𝑃:ω⟶2o) |
4 | 3 | ffnd 5338 |
. 2
⊢ (𝜑 → 𝑃 Fn ω) |
5 | | 1lt2o 6410 |
. . . . . 6
⊢
1o ∈ 2o |
6 | 5 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
2o) |
7 | | 0lt2o 6409 |
. . . . . 6
⊢ ∅
∈ 2o |
8 | 7 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∅ ∈
2o) |
9 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 𝑖 ∈ ω) |
10 | | nnnninfeq.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ω) |
11 | 10 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 𝑁 ∈ ω) |
12 | | nndcel 6468 |
. . . . . 6
⊢ ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) →
DECID 𝑖
∈ 𝑁) |
13 | 9, 11, 12 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → DECID
𝑖 ∈ 𝑁) |
14 | 6, 8, 13 | ifcldcd 3555 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → if(𝑖 ∈ 𝑁, 1o, ∅) ∈
2o) |
15 | 14 | ralrimiva 2539 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ω if(𝑖 ∈ 𝑁, 1o, ∅) ∈
2o) |
16 | | eqid 2165 |
. . . 4
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) |
17 | 16 | fnmpt 5314 |
. . 3
⊢
(∀𝑖 ∈
ω if(𝑖 ∈ 𝑁, 1o, ∅) ∈
2o → (𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅)) Fn ω) |
18 | 15, 17 | syl 14 |
. 2
⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) Fn
ω) |
19 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑃‘𝑤) = (𝑃‘∅)) |
20 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ∈ 𝑁 ↔ ∅ ∈ 𝑁)) |
21 | 20 | ifbid 3541 |
. . . . . . 7
⊢ (𝑤 = ∅ → if(𝑤 ∈ 𝑁, 1o, ∅) = if(∅
∈ 𝑁, 1o,
∅)) |
22 | 19, 21 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅) ↔ (𝑃‘∅) = if(∅
∈ 𝑁, 1o,
∅))) |
23 | 22 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝜑 → (𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o,
∅)))) |
24 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝑃‘𝑤) = (𝑃‘𝑘)) |
25 | | eleq1w 2227 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (𝑤 ∈ 𝑁 ↔ 𝑘 ∈ 𝑁)) |
26 | 25 | ifbid 3541 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → if(𝑤 ∈ 𝑁, 1o, ∅) = if(𝑘 ∈ 𝑁, 1o, ∅)) |
27 | 24, 26 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅) ↔ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅))) |
28 | 27 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝜑 → (𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o,
∅)))) |
29 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → (𝑃‘𝑤) = (𝑃‘suc 𝑘)) |
30 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → (𝑤 ∈ 𝑁 ↔ suc 𝑘 ∈ 𝑁)) |
31 | 30 | ifbid 3541 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → if(𝑤 ∈ 𝑁, 1o, ∅) = if(suc 𝑘 ∈ 𝑁, 1o, ∅)) |
32 | 29, 31 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → ((𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅) ↔ (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o, ∅))) |
33 | 32 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = suc 𝑘 → ((𝜑 → (𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o,
∅)))) |
34 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑃‘𝑤) = (𝑃‘𝑗)) |
35 | | eleq1w 2227 |
. . . . . . . 8
⊢ (𝑤 = 𝑗 → (𝑤 ∈ 𝑁 ↔ 𝑗 ∈ 𝑁)) |
36 | 35 | ifbid 3541 |
. . . . . . 7
⊢ (𝑤 = 𝑗 → if(𝑤 ∈ 𝑁, 1o, ∅) = if(𝑗 ∈ 𝑁, 1o, ∅)) |
37 | 34, 36 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑤 = 𝑗 → ((𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅) ↔ (𝑃‘𝑗) = if(𝑗 ∈ 𝑁, 1o, ∅))) |
38 | 37 | imbi2d 229 |
. . . . 5
⊢ (𝑤 = 𝑗 → ((𝜑 → (𝑃‘𝑤) = if(𝑤 ∈ 𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘𝑗) = if(𝑗 ∈ 𝑁, 1o,
∅)))) |
39 | | noel 3413 |
. . . . . . . . 9
⊢ ¬
∅ ∈ ∅ |
40 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 = ∅) → 𝑁 = ∅) |
41 | 40 | eleq2d 2236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 = ∅) → (∅ ∈ 𝑁 ↔ ∅ ∈
∅)) |
42 | 39, 41 | mtbiri 665 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = ∅) → ¬ ∅ ∈
𝑁) |
43 | 42 | iffalsed 3530 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = ∅) → if(∅ ∈ 𝑁, 1o, ∅) =
∅) |
44 | | nnnninfeq.0 |
. . . . . . . 8
⊢ (𝜑 → (𝑃‘𝑁) = ∅) |
45 | 44 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = ∅) → (𝑃‘𝑁) = ∅) |
46 | 40 | fveq2d 5490 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = ∅) → (𝑃‘𝑁) = (𝑃‘∅)) |
47 | 43, 45, 46 | 3eqtr2rd 2205 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = ∅) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o,
∅)) |
48 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑃‘𝑥) = (𝑃‘∅)) |
49 | 48 | eqeq1d 2174 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝑃‘𝑥) = 1o ↔ (𝑃‘∅) =
1o)) |
50 | | nnnninfeq.1 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) |
51 | 50 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ 𝑁) → ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) |
52 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∅ ∈ 𝑁) → ∅ ∈ 𝑁) |
53 | 49, 51, 52 | rspcdva 2835 |
. . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) =
1o) |
54 | 52 | iftrued 3527 |
. . . . . . 7
⊢ ((𝜑 ∧ ∅ ∈ 𝑁) → if(∅ ∈ 𝑁, 1o, ∅) =
1o) |
55 | 53, 54 | eqtr4d 2201 |
. . . . . 6
⊢ ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o,
∅)) |
56 | | 0elnn 4596 |
. . . . . . 7
⊢ (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∅ ∈
𝑁)) |
57 | 10, 56 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝑁 = ∅ ∨ ∅ ∈ 𝑁)) |
58 | 47, 55, 57 | mpjaodan 788 |
. . . . 5
⊢ (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o,
∅)) |
59 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑘 → (𝑃‘𝑥) = (𝑃‘suc 𝑘)) |
60 | 59 | eqeq1d 2174 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑘 → ((𝑃‘𝑥) = 1o ↔ (𝑃‘suc 𝑘) = 1o)) |
61 | 50 | ad3antlr 485 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 ∈ 𝑁) → ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) |
62 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 ∈ 𝑁) → suc 𝑘 ∈ 𝑁) |
63 | 60, 61, 62 | rspcdva 2835 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 ∈ 𝑁) → (𝑃‘suc 𝑘) = 1o) |
64 | 62 | iftrued 3527 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 ∈ 𝑁) → if(suc 𝑘 ∈ 𝑁, 1o, ∅) =
1o) |
65 | 63, 64 | eqtr4d 2201 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 ∈ 𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o, ∅)) |
66 | 44 | ad3antlr 485 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘𝑁) = ∅) |
67 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → suc 𝑘 = 𝑁) |
68 | 67 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = (𝑃‘𝑁)) |
69 | 10 | ad2antlr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) → 𝑁 ∈
ω) |
70 | | nnord 4589 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ω → Ord 𝑁) |
71 | | ordirr 4519 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑁 → ¬ 𝑁 ∈ 𝑁) |
72 | 69, 70, 71 | 3syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) → ¬
𝑁 ∈ 𝑁) |
73 | 72 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ 𝑁 ∈ 𝑁) |
74 | 67, 73 | eqneltrd 2262 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ suc 𝑘 ∈ 𝑁) |
75 | 74 | iffalsed 3530 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → if(suc 𝑘 ∈ 𝑁, 1o, ∅) =
∅) |
76 | 66, 68, 75 | 3eqtr4d 2208 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o, ∅)) |
77 | | suceq 4380 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) |
78 | 77 | fveq2d 5490 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝑃‘suc 𝑗) = (𝑃‘suc 𝑘)) |
79 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝑃‘𝑗) = (𝑃‘𝑘)) |
80 | 78, 79 | sseq12d 3173 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → ((𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗) ↔ (𝑃‘suc 𝑘) ⊆ (𝑃‘𝑘))) |
81 | 1 | ad3antlr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑃 ∈
ℕ∞) |
82 | | fveq1 5485 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗)) |
83 | | fveq1 5485 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑃 → (𝑓‘𝑗) = (𝑃‘𝑗)) |
84 | 82, 83 | sseq12d 3173 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
85 | 84 | ralbidv 2466 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
86 | | df-nninf 7085 |
. . . . . . . . . . . . . . 15
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} |
87 | 85, 86 | elrab2 2885 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
ℕ∞ ↔ (𝑃 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
88 | 87 | simprbi 273 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
ℕ∞ → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗)) |
89 | 81, 88 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗)) |
90 | | simplll 523 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑘 ∈ ω) |
91 | 80, 89, 90 | rspcdva 2835 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ (𝑃‘𝑘)) |
92 | | simplr 520 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) |
93 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ suc 𝑘) |
94 | | nnord 4589 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ω → Ord 𝑘) |
95 | | ordtr 4356 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝑘 → Tr 𝑘) |
96 | | trsucss 4401 |
. . . . . . . . . . . . . . . 16
⊢ (Tr 𝑘 → (𝑁 ∈ suc 𝑘 → 𝑁 ⊆ 𝑘)) |
97 | 94, 95, 96 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ω → (𝑁 ∈ suc 𝑘 → 𝑁 ⊆ 𝑘)) |
98 | 90, 93, 97 | sylc 62 |
. . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ⊆ 𝑘) |
99 | 69 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ ω) |
100 | | nntri1 6464 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ω ∧ 𝑘 ∈ ω) → (𝑁 ⊆ 𝑘 ↔ ¬ 𝑘 ∈ 𝑁)) |
101 | 99, 90, 100 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑁 ⊆ 𝑘 ↔ ¬ 𝑘 ∈ 𝑁)) |
102 | 98, 101 | mpbid 146 |
. . . . . . . . . . . . 13
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ 𝑘 ∈ 𝑁) |
103 | 102 | iffalsed 3530 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(𝑘 ∈ 𝑁, 1o, ∅) =
∅) |
104 | 92, 103 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘𝑘) = ∅) |
105 | 91, 104 | sseqtrd 3180 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ ∅) |
106 | | ss0 3449 |
. . . . . . . . . 10
⊢ ((𝑃‘suc 𝑘) ⊆ ∅ → (𝑃‘suc 𝑘) = ∅) |
107 | 105, 106 | syl 14 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = ∅) |
108 | | ordn2lp 4522 |
. . . . . . . . . . . 12
⊢ (Ord
𝑁 → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘 ∈ 𝑁)) |
109 | 99, 70, 108 | 3syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘 ∈ 𝑁)) |
110 | | simplr 520 |
. . . . . . . . . . . 12
⊢
(((((𝑘 ∈
ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘 ∈ 𝑁) → 𝑁 ∈ suc 𝑘) |
111 | | simpr 109 |
. . . . . . . . . . . 12
⊢
(((((𝑘 ∈
ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘 ∈ 𝑁) → suc 𝑘 ∈ 𝑁) |
112 | 110, 111 | jca 304 |
. . . . . . . . . . 11
⊢
(((((𝑘 ∈
ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘 ∈ 𝑁) → (𝑁 ∈ suc 𝑘 ∧ suc 𝑘 ∈ 𝑁)) |
113 | 109, 112 | mtand 655 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ suc 𝑘 ∈ 𝑁) |
114 | 113 | iffalsed 3530 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(suc 𝑘 ∈ 𝑁, 1o, ∅) =
∅) |
115 | 107, 114 | eqtr4d 2201 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o, ∅)) |
116 | | peano2 4572 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
117 | 116 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) → suc 𝑘 ∈
ω) |
118 | | nntri3or 6461 |
. . . . . . . . 9
⊢ ((suc
𝑘 ∈ ω ∧
𝑁 ∈ ω) →
(suc 𝑘 ∈ 𝑁 ∨ suc 𝑘 = 𝑁 ∨ 𝑁 ∈ suc 𝑘)) |
119 | 117, 69, 118 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) → (suc 𝑘 ∈ 𝑁 ∨ suc 𝑘 = 𝑁 ∨ 𝑁 ∈ suc 𝑘)) |
120 | 65, 76, 115, 119 | mpjao3dan 1297 |
. . . . . . 7
⊢ (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o, ∅)) |
121 | 120 | exp31 362 |
. . . . . 6
⊢ (𝑘 ∈ ω → (𝜑 → ((𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅) → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o,
∅)))) |
122 | 121 | a2d 26 |
. . . . 5
⊢ (𝑘 ∈ ω → ((𝜑 → (𝑃‘𝑘) = if(𝑘 ∈ 𝑁, 1o, ∅)) → (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘 ∈ 𝑁, 1o,
∅)))) |
123 | 23, 28, 33, 38, 58, 122 | finds 4577 |
. . . 4
⊢ (𝑗 ∈ ω → (𝜑 → (𝑃‘𝑗) = if(𝑗 ∈ 𝑁, 1o, ∅))) |
124 | 123 | impcom 124 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑃‘𝑗) = if(𝑗 ∈ 𝑁, 1o, ∅)) |
125 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω) |
126 | 5 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 1o ∈
2o) |
127 | 7 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ∅ ∈
2o) |
128 | 10 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 𝑁 ∈ ω) |
129 | | nndcel 6468 |
. . . . . 6
⊢ ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) →
DECID 𝑗
∈ 𝑁) |
130 | 125, 128,
129 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → DECID
𝑗 ∈ 𝑁) |
131 | 126, 127,
130 | ifcldcd 3555 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → if(𝑗 ∈ 𝑁, 1o, ∅) ∈
2o) |
132 | | eleq1w 2227 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝑁 ↔ 𝑗 ∈ 𝑁)) |
133 | 132 | ifbid 3541 |
. . . . 5
⊢ (𝑖 = 𝑗 → if(𝑖 ∈ 𝑁, 1o, ∅) = if(𝑗 ∈ 𝑁, 1o, ∅)) |
134 | 133, 16 | fvmptg 5562 |
. . . 4
⊢ ((𝑗 ∈ ω ∧ if(𝑗 ∈ 𝑁, 1o, ∅) ∈
2o) → ((𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅))‘𝑗) =
if(𝑗 ∈ 𝑁, 1o,
∅)) |
135 | 125, 131,
134 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗) = if(𝑗 ∈ 𝑁, 1o, ∅)) |
136 | 124, 135 | eqtr4d 2201 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝑃‘𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑗)) |
137 | 4, 18, 136 | eqfnfvd 5586 |
1
⊢ (𝜑 → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |