ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninfeq GIF version

Theorem nnnninfeq 7230
Description: Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfeq.p (𝜑𝑃 ∈ ℕ)
nnnninfeq.n (𝜑𝑁 ∈ ω)
nnnninfeq.1 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
nnnninfeq.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfeq (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁   𝑥,𝑁   𝑥,𝑃   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑖)

Proof of Theorem nnnninfeq
Dummy variables 𝑗 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfeq.p . . . 4 (𝜑𝑃 ∈ ℕ)
2 nninff 7224 . . . 4 (𝑃 ∈ ℕ𝑃:ω⟶2o)
31, 2syl 14 . . 3 (𝜑𝑃:ω⟶2o)
43ffnd 5426 . 2 (𝜑𝑃 Fn ω)
5 1lt2o 6528 . . . . . 6 1o ∈ 2o
65a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
7 0lt2o 6527 . . . . . 6 ∅ ∈ 2o
87a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
9 simpr 110 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
10 nnnninfeq.n . . . . . . 7 (𝜑𝑁 ∈ ω)
1110adantr 276 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6586 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
139, 11, 12syl2anc 411 . . . . 5 ((𝜑𝑖 ∈ ω) → DECID 𝑖𝑁)
146, 8, 13ifcldcd 3608 . . . 4 ((𝜑𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
1514ralrimiva 2579 . . 3 (𝜑 → ∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o)
16 eqid 2205 . . . 4 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
1716fnmpt 5402 . . 3 (∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
1815, 17syl 14 . 2 (𝜑 → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
19 fveq2 5576 . . . . . . 7 (𝑤 = ∅ → (𝑃𝑤) = (𝑃‘∅))
20 eleq1 2268 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ∈ 𝑁))
2120ifbid 3592 . . . . . . 7 (𝑤 = ∅ → if(𝑤𝑁, 1o, ∅) = if(∅ ∈ 𝑁, 1o, ∅))
2219, 21eqeq12d 2220 . . . . . 6 (𝑤 = ∅ → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅)))
2322imbi2d 230 . . . . 5 (𝑤 = ∅ → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))))
24 fveq2 5576 . . . . . . 7 (𝑤 = 𝑘 → (𝑃𝑤) = (𝑃𝑘))
25 eleq1w 2266 . . . . . . . 8 (𝑤 = 𝑘 → (𝑤𝑁𝑘𝑁))
2625ifbid 3592 . . . . . . 7 (𝑤 = 𝑘 → if(𝑤𝑁, 1o, ∅) = if(𝑘𝑁, 1o, ∅))
2724, 26eqeq12d 2220 . . . . . 6 (𝑤 = 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)))
2827imbi2d 230 . . . . 5 (𝑤 = 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))))
29 fveq2 5576 . . . . . . 7 (𝑤 = suc 𝑘 → (𝑃𝑤) = (𝑃‘suc 𝑘))
30 eleq1 2268 . . . . . . . 8 (𝑤 = suc 𝑘 → (𝑤𝑁 ↔ suc 𝑘𝑁))
3130ifbid 3592 . . . . . . 7 (𝑤 = suc 𝑘 → if(𝑤𝑁, 1o, ∅) = if(suc 𝑘𝑁, 1o, ∅))
3229, 31eqeq12d 2220 . . . . . 6 (𝑤 = suc 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅)))
3332imbi2d 230 . . . . 5 (𝑤 = suc 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
34 fveq2 5576 . . . . . . 7 (𝑤 = 𝑗 → (𝑃𝑤) = (𝑃𝑗))
35 eleq1w 2266 . . . . . . . 8 (𝑤 = 𝑗 → (𝑤𝑁𝑗𝑁))
3635ifbid 3592 . . . . . . 7 (𝑤 = 𝑗 → if(𝑤𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
3734, 36eqeq12d 2220 . . . . . 6 (𝑤 = 𝑗 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
3837imbi2d 230 . . . . 5 (𝑤 = 𝑗 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))))
39 noel 3464 . . . . . . . . 9 ¬ ∅ ∈ ∅
40 simpr 110 . . . . . . . . . 10 ((𝜑𝑁 = ∅) → 𝑁 = ∅)
4140eleq2d 2275 . . . . . . . . 9 ((𝜑𝑁 = ∅) → (∅ ∈ 𝑁 ↔ ∅ ∈ ∅))
4239, 41mtbiri 677 . . . . . . . 8 ((𝜑𝑁 = ∅) → ¬ ∅ ∈ 𝑁)
4342iffalsed 3581 . . . . . . 7 ((𝜑𝑁 = ∅) → if(∅ ∈ 𝑁, 1o, ∅) = ∅)
44 nnnninfeq.0 . . . . . . . 8 (𝜑 → (𝑃𝑁) = ∅)
4544adantr 276 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = ∅)
4640fveq2d 5580 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = (𝑃‘∅))
4743, 45, 463eqtr2rd 2245 . . . . . 6 ((𝜑𝑁 = ∅) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
48 fveq2 5576 . . . . . . . . 9 (𝑥 = ∅ → (𝑃𝑥) = (𝑃‘∅))
4948eqeq1d 2214 . . . . . . . 8 (𝑥 = ∅ → ((𝑃𝑥) = 1o ↔ (𝑃‘∅) = 1o))
50 nnnninfeq.1 . . . . . . . . 9 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
5150adantr 276 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
52 simpr 110 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∅ ∈ 𝑁)
5349, 51, 52rspcdva 2882 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = 1o)
5452iftrued 3578 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → if(∅ ∈ 𝑁, 1o, ∅) = 1o)
5553, 54eqtr4d 2241 . . . . . 6 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
56 0elnn 4667 . . . . . . 7 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5710, 56syl 14 . . . . . 6 (𝜑 → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5847, 55, 57mpjaodan 800 . . . . 5 (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
59 fveq2 5576 . . . . . . . . . . 11 (𝑥 = suc 𝑘 → (𝑃𝑥) = (𝑃‘suc 𝑘))
6059eqeq1d 2214 . . . . . . . . . 10 (𝑥 = suc 𝑘 → ((𝑃𝑥) = 1o ↔ (𝑃‘suc 𝑘) = 1o))
6150ad3antlr 493 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
62 simpr 110 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
6360, 61, 62rspcdva 2882 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = 1o)
6462iftrued 3578 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → if(suc 𝑘𝑁, 1o, ∅) = 1o)
6563, 64eqtr4d 2241 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
6644ad3antlr 493 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃𝑁) = ∅)
67 simpr 110 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → suc 𝑘 = 𝑁)
6867fveq2d 5580 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = (𝑃𝑁))
6910ad2antlr 489 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → 𝑁 ∈ ω)
70 nnord 4660 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
71 ordirr 4590 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
7269, 70, 713syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → ¬ 𝑁𝑁)
7372adantr 276 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ 𝑁𝑁)
7467, 73eqneltrd 2301 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ suc 𝑘𝑁)
7574iffalsed 3581 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
7666, 68, 753eqtr4d 2248 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
77 suceq 4449 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
7877fveq2d 5580 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃‘suc 𝑗) = (𝑃‘suc 𝑘))
79 fveq2 5576 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃𝑗) = (𝑃𝑘))
8078, 79sseq12d 3224 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑃‘suc 𝑗) ⊆ (𝑃𝑗) ↔ (𝑃‘suc 𝑘) ⊆ (𝑃𝑘)))
811ad3antlr 493 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑃 ∈ ℕ)
82 fveq1 5575 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗))
83 fveq1 5575 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓𝑗) = (𝑃𝑗))
8482, 83sseq12d 3224 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8584ralbidv 2506 . . . . . . . . . . . . . . 15 (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
86 df-nninf 7222 . . . . . . . . . . . . . . 15 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
8785, 86elrab2 2932 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ ↔ (𝑃 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8887simprbi 275 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
8981, 88syl 14 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
90 simplll 533 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑘 ∈ ω)
9180, 89, 90rspcdva 2882 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ (𝑃𝑘))
92 simplr 528 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))
93 simpr 110 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ suc 𝑘)
94 nnord 4660 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ω → Ord 𝑘)
95 ordtr 4425 . . . . . . . . . . . . . . . 16 (Ord 𝑘 → Tr 𝑘)
96 trsucss 4470 . . . . . . . . . . . . . . . 16 (Tr 𝑘 → (𝑁 ∈ suc 𝑘𝑁𝑘))
9794, 95, 963syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → (𝑁 ∈ suc 𝑘𝑁𝑘))
9890, 93, 97sylc 62 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁𝑘)
9969adantr 276 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ ω)
100 nntri1 6582 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 𝑘 ∈ ω) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10199, 90, 100syl2anc 411 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10298, 101mpbid 147 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ 𝑘𝑁)
103102iffalsed 3581 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(𝑘𝑁, 1o, ∅) = ∅)
10492, 103eqtrd 2238 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = ∅)
10591, 104sseqtrd 3231 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ ∅)
106 ss0 3501 . . . . . . . . . 10 ((𝑃‘suc 𝑘) ⊆ ∅ → (𝑃‘suc 𝑘) = ∅)
107105, 106syl 14 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = ∅)
108 ordn2lp 4593 . . . . . . . . . . . 12 (Ord 𝑁 → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
10999, 70, 1083syl 17 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
110 simplr 528 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → 𝑁 ∈ suc 𝑘)
111 simpr 110 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
112110, 111jca 306 . . . . . . . . . . 11 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
113109, 112mtand 667 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ suc 𝑘𝑁)
114113iffalsed 3581 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
115107, 114eqtr4d 2241 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
116 peano2 4643 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
117116ad2antrr 488 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → suc 𝑘 ∈ ω)
118 nntri3or 6579 . . . . . . . . 9 ((suc 𝑘 ∈ ω ∧ 𝑁 ∈ ω) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
119117, 69, 118syl2anc 411 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
12065, 76, 115, 119mpjao3dan 1320 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
121120exp31 364 . . . . . 6 (𝑘 ∈ ω → (𝜑 → ((𝑃𝑘) = if(𝑘𝑁, 1o, ∅) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
122121a2d 26 . . . . 5 (𝑘 ∈ ω → ((𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
12323, 28, 33, 38, 58, 122finds 4648 . . . 4 (𝑗 ∈ ω → (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
124123impcom 125 . . 3 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))
125 simpr 110 . . . 4 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
1265a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → 1o ∈ 2o)
1277a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → ∅ ∈ 2o)
12810adantr 276 . . . . . 6 ((𝜑𝑗 ∈ ω) → 𝑁 ∈ ω)
129 nndcel 6586 . . . . . 6 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
130125, 128, 129syl2anc 411 . . . . 5 ((𝜑𝑗 ∈ ω) → DECID 𝑗𝑁)
131126, 127, 130ifcldcd 3608 . . . 4 ((𝜑𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
132 eleq1w 2266 . . . . . 6 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
133132ifbid 3592 . . . . 5 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
134133, 16fvmptg 5655 . . . 4 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
135125, 131, 134syl2anc 411 . . 3 ((𝜑𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
136124, 135eqtr4d 2241 . 2 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
1374, 18, 136eqfnfvd 5680 1 (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2176  wral 2484  wss 3166  c0 3460  ifcif 3571  cmpt 4105  Tr wtr 4142  Ord word 4409  suc csuc 4412  ωcom 4638   Fn wfn 5266  wf 5267  cfv 5271  (class class class)co 5944  1oc1o 6495  2oc2o 6496  𝑚 cmap 6735  xnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by:  nnnninfeq2  7231  nninfisollem0  7232  nninfalllem1  15945  nninfsellemeq  15951
  Copyright terms: Public domain W3C validator