Step | Hyp | Ref
| Expression |
1 | | nnnninfeq2.p |
. 2
⊢ (𝜑 → 𝑃 ∈
ℕ∞) |
2 | | nnnninfeq2.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ω) |
3 | | nnnninfeq2.1 |
. . 3
⊢ (𝜑 → (𝑃‘∪ 𝑁) =
1o) |
4 | 2 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑃‘∪ 𝑁) = 1o) → 𝑁 ∈
ω) |
5 | | unieq 3805 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ∪ 𝑤 =
∪ ∅) |
6 | 5 | fveqeq2d 5504 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑃‘∪ 𝑤) =
1o ↔ (𝑃‘∪ ∅)
= 1o)) |
7 | 6 | anbi2d 461 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) ↔ (𝜑 ∧ (𝑃‘∪ ∅)
= 1o))) |
8 | | raleq 2665 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o ↔ ∀𝑥 ∈ ∅ (𝑃‘𝑥) = 1o)) |
9 | 7, 8 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = ∅ → (((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) →
∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o) ↔ ((𝜑 ∧ (𝑃‘∪ ∅)
= 1o) → ∀𝑥 ∈ ∅ (𝑃‘𝑥) = 1o))) |
10 | | unieq 3805 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → ∪ 𝑤 = ∪
𝑘) |
11 | 10 | fveqeq2d 5504 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → ((𝑃‘∪ 𝑤) = 1o ↔ (𝑃‘∪ 𝑘) =
1o)) |
12 | 11 | anbi2d 461 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) ↔ (𝜑 ∧ (𝑃‘∪ 𝑘) =
1o))) |
13 | | raleq 2665 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) |
14 | 12, 13 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑘 → (((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) →
∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o) ↔ ((𝜑 ∧ (𝑃‘∪ 𝑘) = 1o) →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o))) |
15 | | unieq 3805 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → ∪ 𝑤 = ∪
suc 𝑘) |
16 | 15 | fveqeq2d 5504 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → ((𝑃‘∪ 𝑤) = 1o ↔ (𝑃‘∪ suc 𝑘) = 1o)) |
17 | 16 | anbi2d 461 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → ((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) ↔ (𝜑 ∧ (𝑃‘∪ suc
𝑘) =
1o))) |
18 | | raleq 2665 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → (∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o ↔ ∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o)) |
19 | 17, 18 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = suc 𝑘 → (((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) →
∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o) ↔ ((𝜑 ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o))) |
20 | | unieq 3805 |
. . . . . . . 8
⊢ (𝑤 = 𝑁 → ∪ 𝑤 = ∪
𝑁) |
21 | 20 | fveqeq2d 5504 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → ((𝑃‘∪ 𝑤) = 1o ↔ (𝑃‘∪ 𝑁) =
1o)) |
22 | 21 | anbi2d 461 |
. . . . . 6
⊢ (𝑤 = 𝑁 → ((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) ↔ (𝜑 ∧ (𝑃‘∪ 𝑁) =
1o))) |
23 | | raleq 2665 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o)) |
24 | 22, 23 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑁 → (((𝜑 ∧ (𝑃‘∪ 𝑤) = 1o) →
∀𝑥 ∈ 𝑤 (𝑃‘𝑥) = 1o) ↔ ((𝜑 ∧ (𝑃‘∪ 𝑁) = 1o) →
∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o))) |
25 | | ral0 3516 |
. . . . . 6
⊢
∀𝑥 ∈
∅ (𝑃‘𝑥) =
1o |
26 | 25 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃‘∪ ∅)
= 1o) → ∀𝑥 ∈ ∅ (𝑃‘𝑥) = 1o) |
27 | | uni0 3823 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ∅ = ∅ |
28 | | unieq 3805 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = ∅ → ∪ 𝑘 =
∪ ∅) |
29 | | id 19 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = ∅ → 𝑘 = ∅) |
30 | 27, 28, 29 | 3eqtr4a 2229 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = ∅ → ∪ 𝑘 =
𝑘) |
31 | 30 | fveq2d 5500 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = ∅ → (𝑃‘∪ 𝑘) =
(𝑃‘𝑘)) |
32 | | nnord 4596 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ω → Ord 𝑘) |
33 | | ordtr 4363 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑘 → Tr 𝑘) |
34 | 32, 33 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ω → Tr 𝑘) |
35 | 34 | ad3antlr 490 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
Tr 𝑘) |
36 | | unisucg 4399 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ω → (Tr 𝑘 ↔ ∪ suc 𝑘 = 𝑘)) |
37 | 36 | ad3antlr 490 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(Tr 𝑘 ↔ ∪ suc 𝑘 = 𝑘)) |
38 | 35, 37 | mpbid 146 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∪ suc 𝑘 = 𝑘) |
39 | 38 | fveq2d 5500 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(𝑃‘∪ suc 𝑘) = (𝑃‘𝑘)) |
40 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(𝑃‘∪ suc 𝑘) = 1o) |
41 | 39, 40 | eqtr3d 2205 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(𝑃‘𝑘) = 1o) |
42 | 31, 41 | sylan9eqr 2225 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
𝑘 = ∅) → (𝑃‘∪ 𝑘) =
1o) |
43 | | nninff 7099 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈
ℕ∞ → 𝑃:ω⟶2o) |
44 | 1, 43 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃:ω⟶2o) |
45 | 44 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → 𝑃:ω⟶2o) |
46 | | nnpredcl 4607 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ω → ∪ 𝑘
∈ ω) |
47 | 46 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → ∪ 𝑘
∈ ω) |
48 | 45, 47 | ffvelrnd 5632 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (𝑃‘∪ 𝑘) ∈
2o) |
49 | | el2oss1o 6422 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃‘∪ 𝑘)
∈ 2o → (𝑃‘∪ 𝑘) ⊆
1o) |
50 | 48, 49 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (𝑃‘∪ 𝑘) ⊆
1o) |
51 | 50 | ad3antrrr 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
(𝑃‘∪ 𝑘)
⊆ 1o) |
52 | | simp-4r 537 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
𝑘 ∈
ω) |
53 | | simpr 109 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
¬ 𝑘 =
∅) |
54 | 53 | neqned 2347 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
𝑘 ≠
∅) |
55 | | nnsucpred 4601 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ω ∧ 𝑘 ≠ ∅) → suc ∪ 𝑘 =
𝑘) |
56 | 52, 54, 55 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
suc ∪ 𝑘 = 𝑘) |
57 | 56 | fveq2d 5500 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
(𝑃‘suc ∪ 𝑘) =
(𝑃‘𝑘)) |
58 | 41 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
(𝑃‘𝑘) = 1o) |
59 | 57, 58 | eqtrd 2203 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
(𝑃‘suc ∪ 𝑘) =
1o) |
60 | | suceq 4387 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = ∪
𝑘 → suc 𝑗 = suc ∪ 𝑘) |
61 | 60 | fveq2d 5500 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = ∪
𝑘 → (𝑃‘suc 𝑗) = (𝑃‘suc ∪
𝑘)) |
62 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = ∪
𝑘 → (𝑃‘𝑗) = (𝑃‘∪ 𝑘)) |
63 | 61, 62 | sseq12d 3178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = ∪
𝑘 → ((𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗) ↔ (𝑃‘suc ∪
𝑘) ⊆ (𝑃‘∪ 𝑘))) |
64 | | fveq1 5495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗)) |
65 | | fveq1 5495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑃 → (𝑓‘𝑗) = (𝑃‘𝑗)) |
66 | 64, 65 | sseq12d 3178 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
67 | 66 | ralbidv 2470 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
68 | | df-nninf 7097 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} |
69 | 67, 68 | elrab2 2889 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈
ℕ∞ ↔ (𝑃 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
70 | 1, 69 | sylib 121 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑃 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
71 | 70 | simprd 113 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗)) |
72 | 71 | ad3antrrr 489 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑗 ∈ ω
(𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗)) |
73 | 46 | ad3antlr 490 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∪ 𝑘 ∈ ω) |
74 | 63, 72, 73 | rspcdva 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(𝑃‘suc ∪ 𝑘)
⊆ (𝑃‘∪ 𝑘)) |
75 | 74 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
(𝑃‘suc ∪ 𝑘)
⊆ (𝑃‘∪ 𝑘)) |
76 | 59, 75 | eqsstrrd 3184 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
1o ⊆ (𝑃‘∪ 𝑘)) |
77 | 51, 76 | eqssd 3164 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) ∧
¬ 𝑘 = ∅) →
(𝑃‘∪ 𝑘) =
1o) |
78 | | nndceq0 4602 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ω →
DECID 𝑘 =
∅) |
79 | | exmiddc 831 |
. . . . . . . . . . . . . . 15
⊢
(DECID 𝑘 = ∅ → (𝑘 = ∅ ∨ ¬ 𝑘 = ∅)) |
80 | 78, 79 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ω → (𝑘 = ∅ ∨ ¬ 𝑘 = ∅)) |
81 | 80 | ad3antlr 490 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(𝑘 = ∅ ∨ ¬
𝑘 =
∅)) |
82 | 42, 77, 81 | mpjaodan 793 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(𝑃‘∪ 𝑘) =
1o) |
83 | | simplr 525 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
((𝑃‘∪ 𝑘) =
1o → ∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) |
84 | 82, 83 | mpd 13 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o) |
85 | | fveqeq2 5505 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → ((𝑃‘𝑥) = 1o ↔ (𝑃‘𝑘) = 1o)) |
86 | 85 | ralunsn 3784 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ω →
(∀𝑥 ∈ (𝑘 ∪ {𝑘})(𝑃‘𝑥) = 1o ↔ (∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o ∧ (𝑃‘𝑘) = 1o))) |
87 | 86 | ad3antlr 490 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
(∀𝑥 ∈ (𝑘 ∪ {𝑘})(𝑃‘𝑥) = 1o ↔ (∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o ∧ (𝑃‘𝑘) = 1o))) |
88 | 84, 41, 87 | mpbir2and 939 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑥 ∈ (𝑘 ∪ {𝑘})(𝑃‘𝑥) = 1o) |
89 | | df-suc 4356 |
. . . . . . . . . . 11
⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) |
90 | 89 | raleqi 2669 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
suc 𝑘(𝑃‘𝑥) = 1o ↔ ∀𝑥 ∈ (𝑘 ∪ {𝑘})(𝑃‘𝑥) = 1o) |
91 | 88, 90 | sylibr 133 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ω) ∧ ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o) |
92 | 91 | exp31 362 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ω) → (((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o) → ((𝑃‘∪ suc
𝑘) = 1o →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o))) |
93 | 92 | expcom 115 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (𝜑 → (((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o) → ((𝑃‘∪ suc
𝑘) = 1o →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o)))) |
94 | 93 | a2d 26 |
. . . . . 6
⊢ (𝑘 ∈ ω → ((𝜑 → ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o)) → (𝜑 → ((𝑃‘∪ suc
𝑘) = 1o →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o)))) |
95 | | impexp 261 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑃‘∪ 𝑘) = 1o) →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o) ↔ (𝜑 → ((𝑃‘∪ 𝑘) = 1o →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o))) |
96 | | impexp 261 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o) ↔ (𝜑 → ((𝑃‘∪ suc
𝑘) = 1o →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o))) |
97 | 94, 95, 96 | 3imtr4g 204 |
. . . . 5
⊢ (𝑘 ∈ ω → (((𝜑 ∧ (𝑃‘∪ 𝑘) = 1o) →
∀𝑥 ∈ 𝑘 (𝑃‘𝑥) = 1o) → ((𝜑 ∧ (𝑃‘∪ suc
𝑘) = 1o) →
∀𝑥 ∈ suc 𝑘(𝑃‘𝑥) = 1o))) |
98 | 9, 14, 19, 24, 26, 97 | finds 4584 |
. . . 4
⊢ (𝑁 ∈ ω → ((𝜑 ∧ (𝑃‘∪ 𝑁) = 1o) →
∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o)) |
99 | 4, 98 | mpcom 36 |
. . 3
⊢ ((𝜑 ∧ (𝑃‘∪ 𝑁) = 1o) →
∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) |
100 | 3, 99 | mpdan 419 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑁 (𝑃‘𝑥) = 1o) |
101 | | nnnninfeq2.0 |
. 2
⊢ (𝜑 → (𝑃‘𝑁) = ∅) |
102 | 1, 2, 100, 101 | nnnninfeq 7104 |
1
⊢ (𝜑 → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |