Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfex | GIF version |
Description: ℕ∞ is a set. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfex | ⊢ ℕ∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nninf 7085 | . 2 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
2 | 2onn 6489 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | 2 | elexi 2738 | . . . . 5 ⊢ 2o ∈ V |
4 | omex 4570 | . . . . 5 ⊢ ω ∈ V | |
5 | 3, 4 | mapval 6626 | . . . 4 ⊢ (2o ↑𝑚 ω) = {𝑔 ∣ 𝑔:ω⟶2o} |
6 | mapex 6620 | . . . . 5 ⊢ ((ω ∈ V ∧ 2o ∈ V) → {𝑔 ∣ 𝑔:ω⟶2o} ∈ V) | |
7 | 4, 3, 6 | mp2an 423 | . . . 4 ⊢ {𝑔 ∣ 𝑔:ω⟶2o} ∈ V |
8 | 5, 7 | eqeltri 2239 | . . 3 ⊢ (2o ↑𝑚 ω) ∈ V |
9 | 8 | rabex 4126 | . 2 ⊢ {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} ∈ V |
10 | 1, 9 | eqeltri 2239 | 1 ⊢ ℕ∞ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 {cab 2151 ∀wral 2444 {crab 2448 Vcvv 2726 ⊆ wss 3116 suc csuc 4343 ωcom 4567 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 2oc2o 6378 ↑𝑚 cmap 6614 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 |
This theorem is referenced by: nninfomnilem 13898 nninffeq 13900 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |