ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfex GIF version

Theorem nninfex 7238
Description: is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfex ∈ V

Proof of Theorem nninfex
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nninf 7237 . 2 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2 2onn 6620 . . . . . 6 2o ∈ ω
32elexi 2786 . . . . 5 2o ∈ V
4 omex 4649 . . . . 5 ω ∈ V
53, 4mapval 6760 . . . 4 (2o𝑚 ω) = {𝑔𝑔:ω⟶2o}
6 mapex 6754 . . . . 5 ((ω ∈ V ∧ 2o ∈ V) → {𝑔𝑔:ω⟶2o} ∈ V)
74, 3, 6mp2an 426 . . . 4 {𝑔𝑔:ω⟶2o} ∈ V
85, 7eqeltri 2279 . . 3 (2o𝑚 ω) ∈ V
98rabex 4196 . 2 {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)} ∈ V
101, 9eqeltri 2279 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  {cab 2192  wral 2485  {crab 2489  Vcvv 2773  wss 3170  suc csuc 4420  ωcom 4646  wf 5276  cfv 5280  (class class class)co 5957  2oc2o 6509  𝑚 cmap 6748  xnninf 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1o 6515  df-2o 6516  df-map 6750  df-nninf 7237
This theorem is referenced by:  nninfinf  10610  nninfomnilem  16096  nninffeq  16098  exmidsbthrlem  16102
  Copyright terms: Public domain W3C validator