ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfex GIF version

Theorem nninfex 7138
Description: is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfex ∈ V

Proof of Theorem nninfex
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nninf 7137 . 2 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2 2onn 6540 . . . . . 6 2o ∈ ω
32elexi 2764 . . . . 5 2o ∈ V
4 omex 4607 . . . . 5 ω ∈ V
53, 4mapval 6678 . . . 4 (2o𝑚 ω) = {𝑔𝑔:ω⟶2o}
6 mapex 6672 . . . . 5 ((ω ∈ V ∧ 2o ∈ V) → {𝑔𝑔:ω⟶2o} ∈ V)
74, 3, 6mp2an 426 . . . 4 {𝑔𝑔:ω⟶2o} ∈ V
85, 7eqeltri 2262 . . 3 (2o𝑚 ω) ∈ V
98rabex 4162 . 2 {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)} ∈ V
101, 9eqeltri 2262 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2160  {cab 2175  wral 2468  {crab 2472  Vcvv 2752  wss 3144  suc csuc 4380  ωcom 4604  wf 5227  cfv 5231  (class class class)co 5891  2oc2o 6429  𝑚 cmap 6666  xnninf 7136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1o 6435  df-2o 6436  df-map 6668  df-nninf 7137
This theorem is referenced by:  nninfomnilem  15165  nninffeq  15167  exmidsbthrlem  15168
  Copyright terms: Public domain W3C validator