![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfex | GIF version |
Description: ℕ∞ is a set. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfex | ⊢ ℕ∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nninf 7137 | . 2 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
2 | 2onn 6540 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | 2 | elexi 2764 | . . . . 5 ⊢ 2o ∈ V |
4 | omex 4607 | . . . . 5 ⊢ ω ∈ V | |
5 | 3, 4 | mapval 6678 | . . . 4 ⊢ (2o ↑𝑚 ω) = {𝑔 ∣ 𝑔:ω⟶2o} |
6 | mapex 6672 | . . . . 5 ⊢ ((ω ∈ V ∧ 2o ∈ V) → {𝑔 ∣ 𝑔:ω⟶2o} ∈ V) | |
7 | 4, 3, 6 | mp2an 426 | . . . 4 ⊢ {𝑔 ∣ 𝑔:ω⟶2o} ∈ V |
8 | 5, 7 | eqeltri 2262 | . . 3 ⊢ (2o ↑𝑚 ω) ∈ V |
9 | 8 | rabex 4162 | . 2 ⊢ {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} ∈ V |
10 | 1, 9 | eqeltri 2262 | 1 ⊢ ℕ∞ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 {cab 2175 ∀wral 2468 {crab 2472 Vcvv 2752 ⊆ wss 3144 suc csuc 4380 ωcom 4604 ⟶wf 5227 ‘cfv 5231 (class class class)co 5891 2oc2o 6429 ↑𝑚 cmap 6666 ℕ∞xnninf 7136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4308 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1o 6435 df-2o 6436 df-map 6668 df-nninf 7137 |
This theorem is referenced by: nninfomnilem 15165 nninffeq 15167 exmidsbthrlem 15168 |
Copyright terms: Public domain | W3C validator |