Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfex | GIF version |
Description: ℕ∞ is a set. (Contributed by Jim Kingdon, 10-Aug-2022.) |
Ref | Expression |
---|---|
nninfex | ⊢ ℕ∞ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nninf 7097 | . 2 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
2 | 2onn 6500 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | 2 | elexi 2742 | . . . . 5 ⊢ 2o ∈ V |
4 | omex 4577 | . . . . 5 ⊢ ω ∈ V | |
5 | 3, 4 | mapval 6638 | . . . 4 ⊢ (2o ↑𝑚 ω) = {𝑔 ∣ 𝑔:ω⟶2o} |
6 | mapex 6632 | . . . . 5 ⊢ ((ω ∈ V ∧ 2o ∈ V) → {𝑔 ∣ 𝑔:ω⟶2o} ∈ V) | |
7 | 4, 3, 6 | mp2an 424 | . . . 4 ⊢ {𝑔 ∣ 𝑔:ω⟶2o} ∈ V |
8 | 5, 7 | eqeltri 2243 | . . 3 ⊢ (2o ↑𝑚 ω) ∈ V |
9 | 8 | rabex 4133 | . 2 ⊢ {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} ∈ V |
10 | 1, 9 | eqeltri 2243 | 1 ⊢ ℕ∞ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 {cab 2156 ∀wral 2448 {crab 2452 Vcvv 2730 ⊆ wss 3121 suc csuc 4350 ωcom 4574 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 2oc2o 6389 ↑𝑚 cmap 6626 ℕ∞xnninf 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1o 6395 df-2o 6396 df-map 6628 df-nninf 7097 |
This theorem is referenced by: nninfomnilem 14051 nninffeq 14053 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |