| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfex | GIF version | ||
| Description: ℕ∞ is a set. (Contributed by Jim Kingdon, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfex | ⊢ ℕ∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nninf 7204 | . 2 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 2 | 2onn 6597 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 2783 | . . . . 5 ⊢ 2o ∈ V |
| 4 | omex 4639 | . . . . 5 ⊢ ω ∈ V | |
| 5 | 3, 4 | mapval 6737 | . . . 4 ⊢ (2o ↑𝑚 ω) = {𝑔 ∣ 𝑔:ω⟶2o} |
| 6 | mapex 6731 | . . . . 5 ⊢ ((ω ∈ V ∧ 2o ∈ V) → {𝑔 ∣ 𝑔:ω⟶2o} ∈ V) | |
| 7 | 4, 3, 6 | mp2an 426 | . . . 4 ⊢ {𝑔 ∣ 𝑔:ω⟶2o} ∈ V |
| 8 | 5, 7 | eqeltri 2277 | . . 3 ⊢ (2o ↑𝑚 ω) ∈ V |
| 9 | 8 | rabex 4187 | . 2 ⊢ {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} ∈ V |
| 10 | 1, 9 | eqeltri 2277 | 1 ⊢ ℕ∞ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 {cab 2190 ∀wral 2483 {crab 2487 Vcvv 2771 ⊆ wss 3165 suc csuc 4410 ωcom 4636 ⟶wf 5264 ‘cfv 5268 (class class class)co 5934 2oc2o 6486 ↑𝑚 cmap 6725 ℕ∞xnninf 7203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1o 6492 df-2o 6493 df-map 6727 df-nninf 7204 |
| This theorem is referenced by: nninfinf 10569 nninfomnilem 15819 nninffeq 15821 exmidsbthrlem 15825 |
| Copyright terms: Public domain | W3C validator |