| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfex | GIF version | ||
| Description: ℕ∞ is a set. (Contributed by Jim Kingdon, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfex | ⊢ ℕ∞ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nninf 7283 | . 2 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 2 | 2onn 6665 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | 2 | elexi 2812 | . . . . 5 ⊢ 2o ∈ V |
| 4 | omex 4684 | . . . . 5 ⊢ ω ∈ V | |
| 5 | 3, 4 | mapval 6805 | . . . 4 ⊢ (2o ↑𝑚 ω) = {𝑔 ∣ 𝑔:ω⟶2o} |
| 6 | mapex 6799 | . . . . 5 ⊢ ((ω ∈ V ∧ 2o ∈ V) → {𝑔 ∣ 𝑔:ω⟶2o} ∈ V) | |
| 7 | 4, 3, 6 | mp2an 426 | . . . 4 ⊢ {𝑔 ∣ 𝑔:ω⟶2o} ∈ V |
| 8 | 5, 7 | eqeltri 2302 | . . 3 ⊢ (2o ↑𝑚 ω) ∈ V |
| 9 | 8 | rabex 4227 | . 2 ⊢ {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} ∈ V |
| 10 | 1, 9 | eqeltri 2302 | 1 ⊢ ℕ∞ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 {cab 2215 ∀wral 2508 {crab 2512 Vcvv 2799 ⊆ wss 3197 suc csuc 4455 ωcom 4681 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 2oc2o 6554 ↑𝑚 cmap 6793 ℕ∞xnninf 7282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-map 6795 df-nninf 7283 |
| This theorem is referenced by: nninfinf 10660 nninfomnilem 16343 nninffeq 16345 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |