Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnsf GIF version

Theorem nnsf 14038
Description: Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
Hypothesis
Ref Expression
nns.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
nnsf 𝑆:ℕ⟶ℕ
Distinct variable group:   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑖,𝑝)

Proof of Theorem nnsf
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nns.s . 2 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2 1lt2o 6421 . . . . . . 7 1o ∈ 2o
32a1i 9 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 1o ∈ 2o)
4 nninff 7099 . . . . . . . 8 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54adantr 274 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑝:ω⟶2o)
6 nnpredcl 4607 . . . . . . . 8 (𝑖 ∈ ω → 𝑖 ∈ ω)
76adantl 275 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑖 ∈ ω)
85, 7ffvelrnd 5632 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → (𝑝 𝑖) ∈ 2o)
9 nndceq0 4602 . . . . . . 7 (𝑖 ∈ ω → DECID 𝑖 = ∅)
109adantl 275 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → DECID 𝑖 = ∅)
113, 8, 10ifcldcd 3561 . . . . 5 ((𝑝 ∈ ℕ𝑖 ∈ ω) → if(𝑖 = ∅, 1o, (𝑝 𝑖)) ∈ 2o)
12 eqid 2170 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))
1311, 12fmptd 5650 . . . 4 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
14 2onn 6500 . . . . 5 2o ∈ ω
15 omex 4577 . . . . 5 ω ∈ V
16 elmapg 6639 . . . . 5 ((2o ∈ ω ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o))
1714, 15, 16mp2an 424 . . . 4 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
1813, 17sylibr 133 . . 3 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω))
19 1on 6402 . . . . . . . . 9 1o ∈ On
2019ontrci 4412 . . . . . . . 8 Tr 1o
212a1i 9 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 1o ∈ 2o)
224adantr 274 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑝:ω⟶2o)
23 peano2 4579 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2423adantl 275 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
25 nnpredcl 4607 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → suc 𝑗 ∈ ω)
2624, 25syl 14 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
2722, 26ffvelrnd 5632 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 suc 𝑗) ∈ 2o)
28 nndceq0 4602 . . . . . . . . . . . 12 (suc 𝑗 ∈ ω → DECID suc 𝑗 = ∅)
2924, 28syl 14 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID suc 𝑗 = ∅)
3021, 27, 29ifcldcd 3561 . . . . . . . . . 10 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
3130adantr 274 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
32 df-2o 6396 . . . . . . . . 9 2o = suc 1o
3331, 32eleqtrdi 2263 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o)
34 trsucss 4408 . . . . . . . 8 (Tr 1o → (if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o))
3520, 33, 34mpsyl 65 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o)
36 iftrue 3531 . . . . . . . 8 (𝑗 = ∅ → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3736adantl 275 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3835, 37sseqtrrd 3186 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
39 simpr 109 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
4039adantr 274 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
41 nnord 4596 . . . . . . . . . . 11 (𝑗 ∈ ω → Ord 𝑗)
42 ordtr 4363 . . . . . . . . . . 11 (Ord 𝑗 → Tr 𝑗)
4340, 41, 423syl 17 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → Tr 𝑗)
44 unisucg 4399 . . . . . . . . . . 11 (𝑗 ∈ ω → (Tr 𝑗 suc 𝑗 = 𝑗))
4540, 44syl 14 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (Tr 𝑗 suc 𝑗 = 𝑗))
4643, 45mpbid 146 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
4746fveq2d 5500 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) = (𝑝𝑗))
48 simpr 109 . . . . . . . . . . . 12 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ 𝑗 = ∅)
4948neqned 2347 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ≠ ∅)
50 nnsucpred 4601 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑗 ≠ ∅) → suc 𝑗 = 𝑗)
5140, 49, 50syl2anc 409 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
5251fveq2d 5500 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) = (𝑝𝑗))
53 suceq 4387 . . . . . . . . . . . 12 (𝑘 = 𝑗 → suc 𝑘 = suc 𝑗)
5453fveq2d 5500 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝‘suc 𝑘) = (𝑝‘suc 𝑗))
55 fveq2 5496 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝𝑘) = (𝑝 𝑗))
5654, 55sseq12d 3178 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑝‘suc 𝑘) ⊆ (𝑝𝑘) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗)))
57 fveq1 5495 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓‘suc 𝑗) = (𝑝‘suc 𝑗))
58 fveq1 5495 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓𝑗) = (𝑝𝑗))
5957, 58sseq12d 3178 . . . . . . . . . . . . . . 15 (𝑓 = 𝑝 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6059ralbidv 2470 . . . . . . . . . . . . . 14 (𝑓 = 𝑝 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
61 df-nninf 7097 . . . . . . . . . . . . . 14 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
6260, 61elrab2 2889 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ ↔ (𝑝 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6362simprbi 273 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗))
64 suceq 4387 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
6564fveq2d 5500 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝‘suc 𝑗) = (𝑝‘suc 𝑘))
66 fveq2 5496 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝𝑗) = (𝑝𝑘))
6765, 66sseq12d 3178 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ (𝑝‘suc 𝑘) ⊆ (𝑝𝑘)))
6867cbvralv 2696 . . . . . . . . . . . 12 (∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
6963, 68sylib 121 . . . . . . . . . . 11 (𝑝 ∈ ℕ → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
7069ad2antrr 485 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
71 nnpredcl 4607 . . . . . . . . . . . 12 (𝑗 ∈ ω → 𝑗 ∈ ω)
7271adantl 275 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
7372adantr 274 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
7456, 70, 73rspcdva 2839 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗))
7552, 74eqsstrrd 3184 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝𝑗) ⊆ (𝑝 𝑗))
7647, 75eqsstrd 3183 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) ⊆ (𝑝 𝑗))
77 peano3 4580 . . . . . . . . . 10 (𝑗 ∈ ω → suc 𝑗 ≠ ∅)
7877neneqd 2361 . . . . . . . . 9 (𝑗 ∈ ω → ¬ suc 𝑗 = ∅)
7978ad2antlr 486 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ suc 𝑗 = ∅)
8079iffalsed 3536 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) = (𝑝 suc 𝑗))
8148iffalsed 3536 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = (𝑝 𝑗))
8276, 80, 813sstr4d 3192 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
83 nndceq0 4602 . . . . . . . 8 (𝑗 ∈ ω → DECID 𝑗 = ∅)
8483adantl 275 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID 𝑗 = ∅)
85 exmiddc 831 . . . . . . 7 (DECID 𝑗 = ∅ → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8684, 85syl 14 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8738, 82, 86mpjaodan 793 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
88 eqeq1 2177 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑖 = ∅ ↔ suc 𝑗 = ∅))
89 unieq 3805 . . . . . . . . 9 (𝑖 = suc 𝑗 𝑖 = suc 𝑗)
9089fveq2d 5500 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑝 𝑖) = (𝑝 suc 𝑗))
9188, 90ifbieq2d 3550 . . . . . . 7 (𝑖 = suc 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9291, 12fvmptg 5572 . . . . . 6 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9324, 30, 92syl2anc 409 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9422, 72ffvelrnd 5632 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 𝑗) ∈ 2o)
9521, 94, 84ifcldcd 3561 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o)
96 eqeq1 2177 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = ∅ ↔ 𝑗 = ∅))
97 unieq 3805 . . . . . . . . 9 (𝑖 = 𝑗 𝑖 = 𝑗)
9897fveq2d 5500 . . . . . . . 8 (𝑖 = 𝑗 → (𝑝 𝑖) = (𝑝 𝑗))
9996, 98ifbieq2d 3550 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10099, 12fvmptg 5572 . . . . . 6 ((𝑗 ∈ ω ∧ if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10139, 95, 100syl2anc 409 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10287, 93, 1013sstr4d 3192 . . . 4 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
103102ralrimiva 2543 . . 3 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
104 fveq1 5495 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗))
105 fveq1 5495 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
106104, 105sseq12d 3178 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
107106ralbidv 2470 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
108107, 61elrab2 2889 . . 3 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
10918, 103, 108sylanbrc 415 . 2 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ)
1101, 109fmpti 5648 1 𝑆:ℕ⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  wral 2448  Vcvv 2730  wss 3121  c0 3414  ifcif 3526   cuni 3796  cmpt 4050  Tr wtr 4087  Ord word 4347  suc csuc 4350  ωcom 4574  wf 5194  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  xnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-nninf 7097
This theorem is referenced by:  peano4nninf  14039
  Copyright terms: Public domain W3C validator