Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnsf GIF version

Theorem nnsf 14410
Description: Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
Hypothesis
Ref Expression
nns.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
nnsf 𝑆:ℕ⟶ℕ
Distinct variable group:   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑖,𝑝)

Proof of Theorem nnsf
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nns.s . 2 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2 1lt2o 6437 . . . . . . 7 1o ∈ 2o
32a1i 9 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 1o ∈ 2o)
4 nninff 7115 . . . . . . . 8 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54adantr 276 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑝:ω⟶2o)
6 nnpredcl 4619 . . . . . . . 8 (𝑖 ∈ ω → 𝑖 ∈ ω)
76adantl 277 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑖 ∈ ω)
85, 7ffvelcdmd 5648 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → (𝑝 𝑖) ∈ 2o)
9 nndceq0 4614 . . . . . . 7 (𝑖 ∈ ω → DECID 𝑖 = ∅)
109adantl 277 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → DECID 𝑖 = ∅)
113, 8, 10ifcldcd 3569 . . . . 5 ((𝑝 ∈ ℕ𝑖 ∈ ω) → if(𝑖 = ∅, 1o, (𝑝 𝑖)) ∈ 2o)
12 eqid 2177 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))
1311, 12fmptd 5666 . . . 4 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
14 2onn 6516 . . . . 5 2o ∈ ω
15 omex 4589 . . . . 5 ω ∈ V
16 elmapg 6655 . . . . 5 ((2o ∈ ω ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o))
1714, 15, 16mp2an 426 . . . 4 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
1813, 17sylibr 134 . . 3 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω))
19 1on 6418 . . . . . . . . 9 1o ∈ On
2019ontrci 4424 . . . . . . . 8 Tr 1o
212a1i 9 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 1o ∈ 2o)
224adantr 276 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑝:ω⟶2o)
23 peano2 4591 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2423adantl 277 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
25 nnpredcl 4619 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → suc 𝑗 ∈ ω)
2624, 25syl 14 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
2722, 26ffvelcdmd 5648 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 suc 𝑗) ∈ 2o)
28 nndceq0 4614 . . . . . . . . . . . 12 (suc 𝑗 ∈ ω → DECID suc 𝑗 = ∅)
2924, 28syl 14 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID suc 𝑗 = ∅)
3021, 27, 29ifcldcd 3569 . . . . . . . . . 10 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
3130adantr 276 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
32 df-2o 6412 . . . . . . . . 9 2o = suc 1o
3331, 32eleqtrdi 2270 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o)
34 trsucss 4420 . . . . . . . 8 (Tr 1o → (if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o))
3520, 33, 34mpsyl 65 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o)
36 iftrue 3539 . . . . . . . 8 (𝑗 = ∅ → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3736adantl 277 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3835, 37sseqtrrd 3194 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
39 simpr 110 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
4039adantr 276 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
41 nnord 4608 . . . . . . . . . . 11 (𝑗 ∈ ω → Ord 𝑗)
42 ordtr 4375 . . . . . . . . . . 11 (Ord 𝑗 → Tr 𝑗)
4340, 41, 423syl 17 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → Tr 𝑗)
44 unisucg 4411 . . . . . . . . . . 11 (𝑗 ∈ ω → (Tr 𝑗 suc 𝑗 = 𝑗))
4540, 44syl 14 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (Tr 𝑗 suc 𝑗 = 𝑗))
4643, 45mpbid 147 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
4746fveq2d 5515 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) = (𝑝𝑗))
48 simpr 110 . . . . . . . . . . . 12 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ 𝑗 = ∅)
4948neqned 2354 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ≠ ∅)
50 nnsucpred 4613 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑗 ≠ ∅) → suc 𝑗 = 𝑗)
5140, 49, 50syl2anc 411 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
5251fveq2d 5515 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) = (𝑝𝑗))
53 suceq 4399 . . . . . . . . . . . 12 (𝑘 = 𝑗 → suc 𝑘 = suc 𝑗)
5453fveq2d 5515 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝‘suc 𝑘) = (𝑝‘suc 𝑗))
55 fveq2 5511 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝𝑘) = (𝑝 𝑗))
5654, 55sseq12d 3186 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑝‘suc 𝑘) ⊆ (𝑝𝑘) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗)))
57 fveq1 5510 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓‘suc 𝑗) = (𝑝‘suc 𝑗))
58 fveq1 5510 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓𝑗) = (𝑝𝑗))
5957, 58sseq12d 3186 . . . . . . . . . . . . . . 15 (𝑓 = 𝑝 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6059ralbidv 2477 . . . . . . . . . . . . . 14 (𝑓 = 𝑝 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
61 df-nninf 7113 . . . . . . . . . . . . . 14 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
6260, 61elrab2 2896 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ ↔ (𝑝 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6362simprbi 275 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗))
64 suceq 4399 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
6564fveq2d 5515 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝‘suc 𝑗) = (𝑝‘suc 𝑘))
66 fveq2 5511 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝𝑗) = (𝑝𝑘))
6765, 66sseq12d 3186 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ (𝑝‘suc 𝑘) ⊆ (𝑝𝑘)))
6867cbvralv 2703 . . . . . . . . . . . 12 (∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
6963, 68sylib 122 . . . . . . . . . . 11 (𝑝 ∈ ℕ → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
7069ad2antrr 488 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
71 nnpredcl 4619 . . . . . . . . . . . 12 (𝑗 ∈ ω → 𝑗 ∈ ω)
7271adantl 277 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
7372adantr 276 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
7456, 70, 73rspcdva 2846 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗))
7552, 74eqsstrrd 3192 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝𝑗) ⊆ (𝑝 𝑗))
7647, 75eqsstrd 3191 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) ⊆ (𝑝 𝑗))
77 peano3 4592 . . . . . . . . . 10 (𝑗 ∈ ω → suc 𝑗 ≠ ∅)
7877neneqd 2368 . . . . . . . . 9 (𝑗 ∈ ω → ¬ suc 𝑗 = ∅)
7978ad2antlr 489 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ suc 𝑗 = ∅)
8079iffalsed 3544 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) = (𝑝 suc 𝑗))
8148iffalsed 3544 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = (𝑝 𝑗))
8276, 80, 813sstr4d 3200 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
83 nndceq0 4614 . . . . . . . 8 (𝑗 ∈ ω → DECID 𝑗 = ∅)
8483adantl 277 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID 𝑗 = ∅)
85 exmiddc 836 . . . . . . 7 (DECID 𝑗 = ∅ → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8684, 85syl 14 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8738, 82, 86mpjaodan 798 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
88 eqeq1 2184 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑖 = ∅ ↔ suc 𝑗 = ∅))
89 unieq 3816 . . . . . . . . 9 (𝑖 = suc 𝑗 𝑖 = suc 𝑗)
9089fveq2d 5515 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑝 𝑖) = (𝑝 suc 𝑗))
9188, 90ifbieq2d 3558 . . . . . . 7 (𝑖 = suc 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9291, 12fvmptg 5588 . . . . . 6 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9324, 30, 92syl2anc 411 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9422, 72ffvelcdmd 5648 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 𝑗) ∈ 2o)
9521, 94, 84ifcldcd 3569 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o)
96 eqeq1 2184 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = ∅ ↔ 𝑗 = ∅))
97 unieq 3816 . . . . . . . . 9 (𝑖 = 𝑗 𝑖 = 𝑗)
9897fveq2d 5515 . . . . . . . 8 (𝑖 = 𝑗 → (𝑝 𝑖) = (𝑝 𝑗))
9996, 98ifbieq2d 3558 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10099, 12fvmptg 5588 . . . . . 6 ((𝑗 ∈ ω ∧ if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10139, 95, 100syl2anc 411 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10287, 93, 1013sstr4d 3200 . . . 4 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
103102ralrimiva 2550 . . 3 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
104 fveq1 5510 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗))
105 fveq1 5510 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
106104, 105sseq12d 3186 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
107106ralbidv 2477 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
108107, 61elrab2 2896 . . 3 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
10918, 103, 108sylanbrc 417 . 2 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ)
1101, 109fmpti 5664 1 𝑆:ℕ⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  Vcvv 2737  wss 3129  c0 3422  ifcif 3534   cuni 3807  cmpt 4061  Tr wtr 4098  Ord word 4359  suc csuc 4362  ωcom 4586  wf 5208  cfv 5212  (class class class)co 5869  1oc1o 6404  2oc2o 6405  𝑚 cmap 6642  xnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  peano4nninf  14411
  Copyright terms: Public domain W3C validator