Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnsf GIF version

Theorem nnsf 15649
Description: Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
Hypothesis
Ref Expression
nns.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
nnsf 𝑆:ℕ⟶ℕ
Distinct variable group:   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑖,𝑝)

Proof of Theorem nnsf
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nns.s . 2 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2 1lt2o 6500 . . . . . . 7 1o ∈ 2o
32a1i 9 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 1o ∈ 2o)
4 nninff 7188 . . . . . . . 8 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54adantr 276 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑝:ω⟶2o)
6 nnpredcl 4659 . . . . . . . 8 (𝑖 ∈ ω → 𝑖 ∈ ω)
76adantl 277 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑖 ∈ ω)
85, 7ffvelcdmd 5698 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → (𝑝 𝑖) ∈ 2o)
9 nndceq0 4654 . . . . . . 7 (𝑖 ∈ ω → DECID 𝑖 = ∅)
109adantl 277 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → DECID 𝑖 = ∅)
113, 8, 10ifcldcd 3597 . . . . 5 ((𝑝 ∈ ℕ𝑖 ∈ ω) → if(𝑖 = ∅, 1o, (𝑝 𝑖)) ∈ 2o)
12 eqid 2196 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))
1311, 12fmptd 5716 . . . 4 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
14 2onn 6579 . . . . 5 2o ∈ ω
15 omex 4629 . . . . 5 ω ∈ V
16 elmapg 6720 . . . . 5 ((2o ∈ ω ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o))
1714, 15, 16mp2an 426 . . . 4 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
1813, 17sylibr 134 . . 3 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω))
19 1on 6481 . . . . . . . . 9 1o ∈ On
2019ontrci 4462 . . . . . . . 8 Tr 1o
212a1i 9 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 1o ∈ 2o)
224adantr 276 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑝:ω⟶2o)
23 peano2 4631 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2423adantl 277 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
25 nnpredcl 4659 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → suc 𝑗 ∈ ω)
2624, 25syl 14 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
2722, 26ffvelcdmd 5698 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 suc 𝑗) ∈ 2o)
28 nndceq0 4654 . . . . . . . . . . . 12 (suc 𝑗 ∈ ω → DECID suc 𝑗 = ∅)
2924, 28syl 14 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID suc 𝑗 = ∅)
3021, 27, 29ifcldcd 3597 . . . . . . . . . 10 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
3130adantr 276 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
32 df-2o 6475 . . . . . . . . 9 2o = suc 1o
3331, 32eleqtrdi 2289 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o)
34 trsucss 4458 . . . . . . . 8 (Tr 1o → (if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o))
3520, 33, 34mpsyl 65 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o)
36 iftrue 3566 . . . . . . . 8 (𝑗 = ∅ → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3736adantl 277 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3835, 37sseqtrrd 3222 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
39 simpr 110 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
4039adantr 276 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
41 nnord 4648 . . . . . . . . . . 11 (𝑗 ∈ ω → Ord 𝑗)
42 ordtr 4413 . . . . . . . . . . 11 (Ord 𝑗 → Tr 𝑗)
4340, 41, 423syl 17 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → Tr 𝑗)
44 unisucg 4449 . . . . . . . . . . 11 (𝑗 ∈ ω → (Tr 𝑗 suc 𝑗 = 𝑗))
4540, 44syl 14 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (Tr 𝑗 suc 𝑗 = 𝑗))
4643, 45mpbid 147 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
4746fveq2d 5562 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) = (𝑝𝑗))
48 simpr 110 . . . . . . . . . . . 12 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ 𝑗 = ∅)
4948neqned 2374 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ≠ ∅)
50 nnsucpred 4653 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑗 ≠ ∅) → suc 𝑗 = 𝑗)
5140, 49, 50syl2anc 411 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
5251fveq2d 5562 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) = (𝑝𝑗))
53 suceq 4437 . . . . . . . . . . . 12 (𝑘 = 𝑗 → suc 𝑘 = suc 𝑗)
5453fveq2d 5562 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝‘suc 𝑘) = (𝑝‘suc 𝑗))
55 fveq2 5558 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝𝑘) = (𝑝 𝑗))
5654, 55sseq12d 3214 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑝‘suc 𝑘) ⊆ (𝑝𝑘) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗)))
57 fveq1 5557 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓‘suc 𝑗) = (𝑝‘suc 𝑗))
58 fveq1 5557 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓𝑗) = (𝑝𝑗))
5957, 58sseq12d 3214 . . . . . . . . . . . . . . 15 (𝑓 = 𝑝 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6059ralbidv 2497 . . . . . . . . . . . . . 14 (𝑓 = 𝑝 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
61 df-nninf 7186 . . . . . . . . . . . . . 14 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
6260, 61elrab2 2923 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ ↔ (𝑝 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6362simprbi 275 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗))
64 suceq 4437 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
6564fveq2d 5562 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝‘suc 𝑗) = (𝑝‘suc 𝑘))
66 fveq2 5558 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝𝑗) = (𝑝𝑘))
6765, 66sseq12d 3214 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ (𝑝‘suc 𝑘) ⊆ (𝑝𝑘)))
6867cbvralv 2729 . . . . . . . . . . . 12 (∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
6963, 68sylib 122 . . . . . . . . . . 11 (𝑝 ∈ ℕ → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
7069ad2antrr 488 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
71 nnpredcl 4659 . . . . . . . . . . . 12 (𝑗 ∈ ω → 𝑗 ∈ ω)
7271adantl 277 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
7372adantr 276 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
7456, 70, 73rspcdva 2873 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗))
7552, 74eqsstrrd 3220 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝𝑗) ⊆ (𝑝 𝑗))
7647, 75eqsstrd 3219 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) ⊆ (𝑝 𝑗))
77 peano3 4632 . . . . . . . . . 10 (𝑗 ∈ ω → suc 𝑗 ≠ ∅)
7877neneqd 2388 . . . . . . . . 9 (𝑗 ∈ ω → ¬ suc 𝑗 = ∅)
7978ad2antlr 489 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ suc 𝑗 = ∅)
8079iffalsed 3571 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) = (𝑝 suc 𝑗))
8148iffalsed 3571 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = (𝑝 𝑗))
8276, 80, 813sstr4d 3228 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
83 nndceq0 4654 . . . . . . . 8 (𝑗 ∈ ω → DECID 𝑗 = ∅)
8483adantl 277 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID 𝑗 = ∅)
85 exmiddc 837 . . . . . . 7 (DECID 𝑗 = ∅ → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8684, 85syl 14 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8738, 82, 86mpjaodan 799 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
88 eqeq1 2203 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑖 = ∅ ↔ suc 𝑗 = ∅))
89 unieq 3848 . . . . . . . . 9 (𝑖 = suc 𝑗 𝑖 = suc 𝑗)
9089fveq2d 5562 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑝 𝑖) = (𝑝 suc 𝑗))
9188, 90ifbieq2d 3585 . . . . . . 7 (𝑖 = suc 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9291, 12fvmptg 5637 . . . . . 6 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9324, 30, 92syl2anc 411 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9422, 72ffvelcdmd 5698 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 𝑗) ∈ 2o)
9521, 94, 84ifcldcd 3597 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o)
96 eqeq1 2203 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = ∅ ↔ 𝑗 = ∅))
97 unieq 3848 . . . . . . . . 9 (𝑖 = 𝑗 𝑖 = 𝑗)
9897fveq2d 5562 . . . . . . . 8 (𝑖 = 𝑗 → (𝑝 𝑖) = (𝑝 𝑗))
9996, 98ifbieq2d 3585 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10099, 12fvmptg 5637 . . . . . 6 ((𝑗 ∈ ω ∧ if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10139, 95, 100syl2anc 411 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10287, 93, 1013sstr4d 3228 . . . 4 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
103102ralrimiva 2570 . . 3 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
104 fveq1 5557 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗))
105 fveq1 5557 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
106104, 105sseq12d 3214 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
107106ralbidv 2497 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
108107, 61elrab2 2923 . . 3 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
10918, 103, 108sylanbrc 417 . 2 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ)
1101, 109fmpti 5714 1 𝑆:ℕ⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  Vcvv 2763  wss 3157  c0 3450  ifcif 3561   cuni 3839  cmpt 4094  Tr wtr 4131  Ord word 4397  suc csuc 4400  ωcom 4626  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707  xnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  peano4nninf  15650
  Copyright terms: Public domain W3C validator