Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnsf GIF version

Theorem nnsf 16302
Description: Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
Hypothesis
Ref Expression
nns.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
nnsf 𝑆:ℕ⟶ℕ
Distinct variable group:   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑖,𝑝)

Proof of Theorem nnsf
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nns.s . 2 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
2 1lt2o 6578 . . . . . . 7 1o ∈ 2o
32a1i 9 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 1o ∈ 2o)
4 nninff 7277 . . . . . . . 8 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54adantr 276 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑝:ω⟶2o)
6 nnpredcl 4712 . . . . . . . 8 (𝑖 ∈ ω → 𝑖 ∈ ω)
76adantl 277 . . . . . . 7 ((𝑝 ∈ ℕ𝑖 ∈ ω) → 𝑖 ∈ ω)
85, 7ffvelcdmd 5764 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → (𝑝 𝑖) ∈ 2o)
9 nndceq0 4707 . . . . . . 7 (𝑖 ∈ ω → DECID 𝑖 = ∅)
109adantl 277 . . . . . 6 ((𝑝 ∈ ℕ𝑖 ∈ ω) → DECID 𝑖 = ∅)
113, 8, 10ifcldcd 3640 . . . . 5 ((𝑝 ∈ ℕ𝑖 ∈ ω) → if(𝑖 = ∅, 1o, (𝑝 𝑖)) ∈ 2o)
12 eqid 2229 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))
1311, 12fmptd 5782 . . . 4 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
14 2onn 6657 . . . . 5 2o ∈ ω
15 omex 4682 . . . . 5 ω ∈ V
16 elmapg 6798 . . . . 5 ((2o ∈ ω ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o))
1714, 15, 16mp2an 426 . . . 4 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))):ω⟶2o)
1813, 17sylibr 134 . . 3 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω))
19 1on 6559 . . . . . . . . 9 1o ∈ On
2019ontrci 4515 . . . . . . . 8 Tr 1o
212a1i 9 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 1o ∈ 2o)
224adantr 276 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑝:ω⟶2o)
23 peano2 4684 . . . . . . . . . . . . . 14 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
2423adantl 277 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
25 nnpredcl 4712 . . . . . . . . . . . . 13 (suc 𝑗 ∈ ω → suc 𝑗 ∈ ω)
2624, 25syl 14 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → suc 𝑗 ∈ ω)
2722, 26ffvelcdmd 5764 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 suc 𝑗) ∈ 2o)
28 nndceq0 4707 . . . . . . . . . . . 12 (suc 𝑗 ∈ ω → DECID suc 𝑗 = ∅)
2924, 28syl 14 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID suc 𝑗 = ∅)
3021, 27, 29ifcldcd 3640 . . . . . . . . . 10 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
3130adantr 276 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o)
32 df-2o 6553 . . . . . . . . 9 2o = suc 1o
3331, 32eleqtrdi 2322 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o)
34 trsucss 4511 . . . . . . . 8 (Tr 1o → (if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ suc 1o → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o))
3520, 33, 34mpsyl 65 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ 1o)
36 iftrue 3607 . . . . . . . 8 (𝑗 = ∅ → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3736adantl 277 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = 1o)
3835, 37sseqtrrd 3263 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
39 simpr 110 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
4039adantr 276 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
41 nnord 4701 . . . . . . . . . . 11 (𝑗 ∈ ω → Ord 𝑗)
42 ordtr 4466 . . . . . . . . . . 11 (Ord 𝑗 → Tr 𝑗)
4340, 41, 423syl 17 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → Tr 𝑗)
44 unisucg 4502 . . . . . . . . . . 11 (𝑗 ∈ ω → (Tr 𝑗 suc 𝑗 = 𝑗))
4540, 44syl 14 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (Tr 𝑗 suc 𝑗 = 𝑗))
4643, 45mpbid 147 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
4746fveq2d 5627 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) = (𝑝𝑗))
48 simpr 110 . . . . . . . . . . . 12 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ 𝑗 = ∅)
4948neqned 2407 . . . . . . . . . . 11 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ≠ ∅)
50 nnsucpred 4706 . . . . . . . . . . 11 ((𝑗 ∈ ω ∧ 𝑗 ≠ ∅) → suc 𝑗 = 𝑗)
5140, 49, 50syl2anc 411 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → suc 𝑗 = 𝑗)
5251fveq2d 5627 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) = (𝑝𝑗))
53 suceq 4490 . . . . . . . . . . . 12 (𝑘 = 𝑗 → suc 𝑘 = suc 𝑗)
5453fveq2d 5627 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝‘suc 𝑘) = (𝑝‘suc 𝑗))
55 fveq2 5623 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑝𝑘) = (𝑝 𝑗))
5654, 55sseq12d 3255 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑝‘suc 𝑘) ⊆ (𝑝𝑘) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗)))
57 fveq1 5622 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓‘suc 𝑗) = (𝑝‘suc 𝑗))
58 fveq1 5622 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑝 → (𝑓𝑗) = (𝑝𝑗))
5957, 58sseq12d 3255 . . . . . . . . . . . . . . 15 (𝑓 = 𝑝 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6059ralbidv 2530 . . . . . . . . . . . . . 14 (𝑓 = 𝑝 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
61 df-nninf 7275 . . . . . . . . . . . . . 14 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
6260, 61elrab2 2962 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ ↔ (𝑝 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗)))
6362simprbi 275 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗))
64 suceq 4490 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
6564fveq2d 5627 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝‘suc 𝑗) = (𝑝‘suc 𝑘))
66 fveq2 5623 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑝𝑗) = (𝑝𝑘))
6765, 66sseq12d 3255 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ (𝑝‘suc 𝑘) ⊆ (𝑝𝑘)))
6867cbvralv 2765 . . . . . . . . . . . 12 (∀𝑗 ∈ ω (𝑝‘suc 𝑗) ⊆ (𝑝𝑗) ↔ ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
6963, 68sylib 122 . . . . . . . . . . 11 (𝑝 ∈ ℕ → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
7069ad2antrr 488 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ∀𝑘 ∈ ω (𝑝‘suc 𝑘) ⊆ (𝑝𝑘))
71 nnpredcl 4712 . . . . . . . . . . . 12 (𝑗 ∈ ω → 𝑗 ∈ ω)
7271adantl 277 . . . . . . . . . . 11 ((𝑝 ∈ ℕ𝑗 ∈ ω) → 𝑗 ∈ ω)
7372adantr 276 . . . . . . . . . 10 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → 𝑗 ∈ ω)
7456, 70, 73rspcdva 2912 . . . . . . . . 9 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝‘suc 𝑗) ⊆ (𝑝 𝑗))
7552, 74eqsstrrd 3261 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝𝑗) ⊆ (𝑝 𝑗))
7647, 75eqsstrd 3260 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → (𝑝 suc 𝑗) ⊆ (𝑝 𝑗))
77 peano3 4685 . . . . . . . . . 10 (𝑗 ∈ ω → suc 𝑗 ≠ ∅)
7877neneqd 2421 . . . . . . . . 9 (𝑗 ∈ ω → ¬ suc 𝑗 = ∅)
7978ad2antlr 489 . . . . . . . 8 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → ¬ suc 𝑗 = ∅)
8079iffalsed 3612 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) = (𝑝 suc 𝑗))
8148iffalsed 3612 . . . . . . 7 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = (𝑝 𝑗))
8276, 80, 813sstr4d 3269 . . . . . 6 (((𝑝 ∈ ℕ𝑗 ∈ ω) ∧ ¬ 𝑗 = ∅) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
83 nndceq0 4707 . . . . . . . 8 (𝑗 ∈ ω → DECID 𝑗 = ∅)
8483adantl 277 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → DECID 𝑗 = ∅)
85 exmiddc 841 . . . . . . 7 (DECID 𝑗 = ∅ → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8684, 85syl 14 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑗 = ∅ ∨ ¬ 𝑗 = ∅))
8738, 82, 86mpjaodan 803 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ⊆ if(𝑗 = ∅, 1o, (𝑝 𝑗)))
88 eqeq1 2236 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑖 = ∅ ↔ suc 𝑗 = ∅))
89 unieq 3896 . . . . . . . . 9 (𝑖 = suc 𝑗 𝑖 = suc 𝑗)
9089fveq2d 5627 . . . . . . . 8 (𝑖 = suc 𝑗 → (𝑝 𝑖) = (𝑝 suc 𝑗))
9188, 90ifbieq2d 3627 . . . . . . 7 (𝑖 = suc 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9291, 12fvmptg 5703 . . . . . 6 ((suc 𝑗 ∈ ω ∧ if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9324, 30, 92syl2anc 411 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) = if(suc 𝑗 = ∅, 1o, (𝑝 suc 𝑗)))
9422, 72ffvelcdmd 5764 . . . . . . 7 ((𝑝 ∈ ℕ𝑗 ∈ ω) → (𝑝 𝑗) ∈ 2o)
9521, 94, 84ifcldcd 3640 . . . . . 6 ((𝑝 ∈ ℕ𝑗 ∈ ω) → if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o)
96 eqeq1 2236 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = ∅ ↔ 𝑗 = ∅))
97 unieq 3896 . . . . . . . . 9 (𝑖 = 𝑗 𝑖 = 𝑗)
9897fveq2d 5627 . . . . . . . 8 (𝑖 = 𝑗 → (𝑝 𝑖) = (𝑝 𝑗))
9996, 98ifbieq2d 3627 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10099, 12fvmptg 5703 . . . . . 6 ((𝑗 ∈ ω ∧ if(𝑗 = ∅, 1o, (𝑝 𝑗)) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10139, 95, 100syl2anc 411 . . . . 5 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗) = if(𝑗 = ∅, 1o, (𝑝 𝑗)))
10287, 93, 1013sstr4d 3269 . . . 4 ((𝑝 ∈ ℕ𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
103102ralrimiva 2603 . . 3 (𝑝 ∈ ℕ → ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
104 fveq1 5622 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗))
105 fveq1 5622 . . . . . 6 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗))
106104, 105sseq12d 3255 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
107106ralbidv 2530 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
108107, 61elrab2 2962 . . 3 ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))‘𝑗)))
10918, 103, 108sylanbrc 417 . 2 (𝑝 ∈ ℕ → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) ∈ ℕ)
1101, 109fmpti 5780 1 𝑆:ℕ⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wral 2508  Vcvv 2799  wss 3197  c0 3491  ifcif 3602   cuni 3887  cmpt 4144  Tr wtr 4181  Ord word 4450  suc csuc 4453  ωcom 4679  wf 5310  cfv 5314  (class class class)co 5994  1oc1o 6545  2oc2o 6546  𝑚 cmap 6785  xnninf 7274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1o 6552  df-2o 6553  df-map 6787  df-nninf 7275
This theorem is referenced by:  peano4nninf  16303
  Copyright terms: Public domain W3C validator