![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infnninfOLD | GIF version |
Description: Obsolete version of infnninf 7183 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
infnninfOLD | ⊢ (ω × {1o}) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6495 | . . . 4 ⊢ 1o ∈ 2o | |
2 | 1 | fconst6 5453 | . . 3 ⊢ (ω × {1o}):ω⟶2o |
3 | 2onn 6574 | . . . . 5 ⊢ 2o ∈ ω | |
4 | 3 | elexi 2772 | . . . 4 ⊢ 2o ∈ V |
5 | omex 4625 | . . . 4 ⊢ ω ∈ V | |
6 | 4, 5 | elmap 6731 | . . 3 ⊢ ((ω × {1o}) ∈ (2o ↑𝑚 ω) ↔ (ω × {1o}):ω⟶2o) |
7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {1o}) ∈ (2o ↑𝑚 ω) |
8 | peano2 4627 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
9 | 1oex 6477 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | fvconst2 5774 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o) |
12 | 9 | fvconst2 5774 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘𝑖) = 1o) |
13 | 11, 12 | eqtr4d 2229 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖)) |
14 | eqimss 3233 | . . . 4 ⊢ (((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖) → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)) |
16 | 15 | rgen 2547 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖) |
17 | fveq1 5553 | . . . . 5 ⊢ (𝑓 = (ω × {1o}) → (𝑓‘suc 𝑖) = ((ω × {1o})‘suc 𝑖)) | |
18 | fveq1 5553 | . . . . 5 ⊢ (𝑓 = (ω × {1o}) → (𝑓‘𝑖) = ((ω × {1o})‘𝑖)) | |
19 | 17, 18 | sseq12d 3210 | . . . 4 ⊢ (𝑓 = (ω × {1o}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
20 | 19 | ralbidv 2494 | . . 3 ⊢ (𝑓 = (ω × {1o}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
21 | df-nninf 7179 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
22 | 20, 21 | elrab2 2919 | . 2 ⊢ ((ω × {1o}) ∈ ℕ∞ ↔ ((ω × {1o}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
23 | 7, 16, 22 | mpbir2an 944 | 1 ⊢ (ω × {1o}) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 {csn 3618 suc csuc 4396 ωcom 4622 × cxp 4657 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 1oc1o 6462 2oc2o 6463 ↑𝑚 cmap 6702 ℕ∞xnninf 7178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1o 6469 df-2o 6470 df-map 6704 df-nninf 7179 |
This theorem is referenced by: fxnn0nninf 10510 |
Copyright terms: Public domain | W3C validator |