![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infnninfOLD | GIF version |
Description: Obsolete version of infnninf 7135 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
infnninfOLD | ⊢ (ω × {1o}) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6456 | . . . 4 ⊢ 1o ∈ 2o | |
2 | 1 | fconst6 5427 | . . 3 ⊢ (ω × {1o}):ω⟶2o |
3 | 2onn 6535 | . . . . 5 ⊢ 2o ∈ ω | |
4 | 3 | elexi 2761 | . . . 4 ⊢ 2o ∈ V |
5 | omex 4604 | . . . 4 ⊢ ω ∈ V | |
6 | 4, 5 | elmap 6690 | . . 3 ⊢ ((ω × {1o}) ∈ (2o ↑𝑚 ω) ↔ (ω × {1o}):ω⟶2o) |
7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {1o}) ∈ (2o ↑𝑚 ω) |
8 | peano2 4606 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
9 | 1oex 6438 | . . . . . . 7 ⊢ 1o ∈ V | |
10 | 9 | fvconst2 5745 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o) |
12 | 9 | fvconst2 5745 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘𝑖) = 1o) |
13 | 11, 12 | eqtr4d 2223 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖)) |
14 | eqimss 3221 | . . . 4 ⊢ (((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖) → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)) |
16 | 15 | rgen 2540 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖) |
17 | fveq1 5526 | . . . . 5 ⊢ (𝑓 = (ω × {1o}) → (𝑓‘suc 𝑖) = ((ω × {1o})‘suc 𝑖)) | |
18 | fveq1 5526 | . . . . 5 ⊢ (𝑓 = (ω × {1o}) → (𝑓‘𝑖) = ((ω × {1o})‘𝑖)) | |
19 | 17, 18 | sseq12d 3198 | . . . 4 ⊢ (𝑓 = (ω × {1o}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
20 | 19 | ralbidv 2487 | . . 3 ⊢ (𝑓 = (ω × {1o}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
21 | df-nninf 7132 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
22 | 20, 21 | elrab2 2908 | . 2 ⊢ ((ω × {1o}) ∈ ℕ∞ ↔ ((ω × {1o}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
23 | 7, 16, 22 | mpbir2an 943 | 1 ⊢ (ω × {1o}) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 ∀wral 2465 ⊆ wss 3141 {csn 3604 suc csuc 4377 ωcom 4601 × cxp 4636 ⟶wf 5224 ‘cfv 5228 (class class class)co 5888 1oc1o 6423 2oc2o 6424 ↑𝑚 cmap 6661 ℕ∞xnninf 7131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1o 6430 df-2o 6431 df-map 6663 df-nninf 7132 |
This theorem is referenced by: fxnn0nninf 10451 |
Copyright terms: Public domain | W3C validator |