| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnninfOLD | GIF version | ||
| Description: Obsolete version of infnninf 7240 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| infnninfOLD | ⊢ (ω × {1o}) ∈ ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6540 | . . . 4 ⊢ 1o ∈ 2o | |
| 2 | 1 | fconst6 5486 | . . 3 ⊢ (ω × {1o}):ω⟶2o |
| 3 | 2onn 6619 | . . . . 5 ⊢ 2o ∈ ω | |
| 4 | 3 | elexi 2786 | . . . 4 ⊢ 2o ∈ V |
| 5 | omex 4648 | . . . 4 ⊢ ω ∈ V | |
| 6 | 4, 5 | elmap 6776 | . . 3 ⊢ ((ω × {1o}) ∈ (2o ↑𝑚 ω) ↔ (ω × {1o}):ω⟶2o) |
| 7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {1o}) ∈ (2o ↑𝑚 ω) |
| 8 | peano2 4650 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
| 9 | 1oex 6522 | . . . . . . 7 ⊢ 1o ∈ V | |
| 10 | 9 | fvconst2 5812 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o) |
| 11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o) |
| 12 | 9 | fvconst2 5812 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘𝑖) = 1o) |
| 13 | 11, 12 | eqtr4d 2242 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖)) |
| 14 | eqimss 3251 | . . . 4 ⊢ (((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖) → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)) |
| 16 | 15 | rgen 2560 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖) |
| 17 | fveq1 5587 | . . . . 5 ⊢ (𝑓 = (ω × {1o}) → (𝑓‘suc 𝑖) = ((ω × {1o})‘suc 𝑖)) | |
| 18 | fveq1 5587 | . . . . 5 ⊢ (𝑓 = (ω × {1o}) → (𝑓‘𝑖) = ((ω × {1o})‘𝑖)) | |
| 19 | 17, 18 | sseq12d 3228 | . . . 4 ⊢ (𝑓 = (ω × {1o}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
| 20 | 19 | ralbidv 2507 | . . 3 ⊢ (𝑓 = (ω × {1o}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
| 21 | df-nninf 7236 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 22 | 20, 21 | elrab2 2936 | . 2 ⊢ ((ω × {1o}) ∈ ℕ∞ ↔ ((ω × {1o}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))) |
| 23 | 7, 16, 22 | mpbir2an 945 | 1 ⊢ (ω × {1o}) ∈ ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 {csn 3637 suc csuc 4419 ωcom 4645 × cxp 4680 ⟶wf 5275 ‘cfv 5279 (class class class)co 5956 1oc1o 6507 2oc2o 6508 ↑𝑚 cmap 6747 ℕ∞xnninf 7235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1o 6514 df-2o 6515 df-map 6749 df-nninf 7236 |
| This theorem is referenced by: fxnn0nninf 10601 |
| Copyright terms: Public domain | W3C validator |