ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninfOLD GIF version

Theorem infnninfOLD 7288
Description: Obsolete version of infnninf 7287 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infnninfOLD (ω × {1o}) ∈ ℕ

Proof of Theorem infnninfOLD
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6586 . . . 4 1o ∈ 2o
21fconst6 5524 . . 3 (ω × {1o}):ω⟶2o
3 2onn 6665 . . . . 5 2o ∈ ω
43elexi 2812 . . . 4 2o ∈ V
5 omex 4684 . . . 4 ω ∈ V
64, 5elmap 6822 . . 3 ((ω × {1o}) ∈ (2o𝑚 ω) ↔ (ω × {1o}):ω⟶2o)
72, 6mpbir 146 . 2 (ω × {1o}) ∈ (2o𝑚 ω)
8 peano2 4686 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 1oex 6568 . . . . . . 7 1o ∈ V
109fvconst2 5854 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o)
129fvconst2 5854 . . . . 5 (𝑖 ∈ ω → ((ω × {1o})‘𝑖) = 1o)
1311, 12eqtr4d 2265 . . . 4 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖))
14 eqimss 3278 . . . 4 (((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖) → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))
1615rgen 2583 . 2 𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)
17 fveq1 5625 . . . . 5 (𝑓 = (ω × {1o}) → (𝑓‘suc 𝑖) = ((ω × {1o})‘suc 𝑖))
18 fveq1 5625 . . . . 5 (𝑓 = (ω × {1o}) → (𝑓𝑖) = ((ω × {1o})‘𝑖))
1917, 18sseq12d 3255 . . . 4 (𝑓 = (ω × {1o}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
2019ralbidv 2530 . . 3 (𝑓 = (ω × {1o}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
21 df-nninf 7283 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2962 . 2 ((ω × {1o}) ∈ ℕ ↔ ((ω × {1o}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
237, 16, 22mpbir2an 948 1 (ω × {1o}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  wral 2508  wss 3197  {csn 3666  suc csuc 4455  ωcom 4681   × cxp 4716  wf 5313  cfv 5317  (class class class)co 6000  1oc1o 6553  2oc2o 6554  𝑚 cmap 6793  xnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-nninf 7283
This theorem is referenced by:  fxnn0nninf  10656
  Copyright terms: Public domain W3C validator