ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninfOLD GIF version

Theorem infnninfOLD 7241
Description: Obsolete version of infnninf 7240 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infnninfOLD (ω × {1o}) ∈ ℕ

Proof of Theorem infnninfOLD
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6540 . . . 4 1o ∈ 2o
21fconst6 5486 . . 3 (ω × {1o}):ω⟶2o
3 2onn 6619 . . . . 5 2o ∈ ω
43elexi 2786 . . . 4 2o ∈ V
5 omex 4648 . . . 4 ω ∈ V
64, 5elmap 6776 . . 3 ((ω × {1o}) ∈ (2o𝑚 ω) ↔ (ω × {1o}):ω⟶2o)
72, 6mpbir 146 . 2 (ω × {1o}) ∈ (2o𝑚 ω)
8 peano2 4650 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 1oex 6522 . . . . . . 7 1o ∈ V
109fvconst2 5812 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o)
129fvconst2 5812 . . . . 5 (𝑖 ∈ ω → ((ω × {1o})‘𝑖) = 1o)
1311, 12eqtr4d 2242 . . . 4 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖))
14 eqimss 3251 . . . 4 (((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖) → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))
1615rgen 2560 . 2 𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)
17 fveq1 5587 . . . . 5 (𝑓 = (ω × {1o}) → (𝑓‘suc 𝑖) = ((ω × {1o})‘suc 𝑖))
18 fveq1 5587 . . . . 5 (𝑓 = (ω × {1o}) → (𝑓𝑖) = ((ω × {1o})‘𝑖))
1917, 18sseq12d 3228 . . . 4 (𝑓 = (ω × {1o}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
2019ralbidv 2507 . . 3 (𝑓 = (ω × {1o}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
21 df-nninf 7236 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2936 . 2 ((ω × {1o}) ∈ ℕ ↔ ((ω × {1o}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
237, 16, 22mpbir2an 945 1 (ω × {1o}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  wral 2485  wss 3170  {csn 3637  suc csuc 4419  ωcom 4645   × cxp 4680  wf 5275  cfv 5279  (class class class)co 5956  1oc1o 6507  2oc2o 6508  𝑚 cmap 6747  xnninf 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1o 6514  df-2o 6515  df-map 6749  df-nninf 7236
This theorem is referenced by:  fxnn0nninf  10601
  Copyright terms: Public domain W3C validator