Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infnninf | GIF version |
Description: The point at infinity in ℕ∞ is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4651 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
Ref | Expression |
---|---|
infnninf | ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6410 | . . . . . 6 ⊢ 1o ∈ 2o | |
2 | 1 | a1i 9 | . . . . 5 ⊢ ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o) |
3 | 2 | fmpttd 5640 | . . . 4 ⊢ (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
4 | 3 | mptru 1352 | . . 3 ⊢ (𝑖 ∈ ω ↦ 1o):ω⟶2o |
5 | 2on 6393 | . . . 4 ⊢ 2o ∈ On | |
6 | omex 4570 | . . . 4 ⊢ ω ∈ V | |
7 | elmapg 6627 | . . . 4 ⊢ ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)) | |
8 | 5, 6, 7 | mp2an 423 | . . 3 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
9 | 4, 8 | mpbir 145 | . 2 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) |
10 | peano2 4572 | . . . . . 6 ⊢ (𝑗 ∈ ω → suc 𝑗 ∈ ω) | |
11 | eqidd 2166 | . . . . . . 7 ⊢ (𝑖 = suc 𝑗 → 1o = 1o) | |
12 | eqid 2165 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o) | |
13 | 1oex 6392 | . . . . . . 7 ⊢ 1o ∈ V | |
14 | 11, 12, 13 | fvmpt 5563 | . . . . . 6 ⊢ (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
15 | 10, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
16 | eqidd 2166 | . . . . . 6 ⊢ (𝑖 = 𝑗 → 1o = 1o) | |
17 | 16, 12, 13 | fvmpt 5563 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o) |
18 | 15, 17 | eqtr4d 2201 | . . . 4 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
19 | eqimss 3196 | . . . 4 ⊢ (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
21 | 20 | rgen 2519 | . 2 ⊢ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗) |
22 | fveq1 5485 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗)) | |
23 | fveq1 5485 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
24 | 22, 23 | sseq12d 3173 | . . . 4 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
25 | 24 | ralbidv 2466 | . . 3 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
26 | df-nninf 7085 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} | |
27 | 25, 26 | elrab2 2885 | . 2 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
28 | 9, 21, 27 | mpbir2an 932 | 1 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 ↦ cmpt 4043 Oncon0 4341 suc csuc 4343 ωcom 4567 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 1oc1o 6377 2oc2o 6378 ↑𝑚 cmap 6614 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 |
This theorem is referenced by: nnnninf2 7091 nninffeq 13900 |
Copyright terms: Public domain | W3C validator |