ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf GIF version

Theorem infnninf 7088
Description: The point at infinity in is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4651 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
Assertion
Ref Expression
infnninf (𝑖 ∈ ω ↦ 1o) ∈ ℕ

Proof of Theorem infnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6410 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
32fmpttd 5640 . . . 4 (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o)
43mptru 1352 . . 3 (𝑖 ∈ ω ↦ 1o):ω⟶2o
5 2on 6393 . . . 4 2o ∈ On
6 omex 4570 . . . 4 ω ∈ V
7 elmapg 6627 . . . 4 ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o))
85, 6, 7mp2an 423 . . 3 ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)
94, 8mpbir 145 . 2 (𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω)
10 peano2 4572 . . . . . 6 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
11 eqidd 2166 . . . . . . 7 (𝑖 = suc 𝑗 → 1o = 1o)
12 eqid 2165 . . . . . . 7 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
13 1oex 6392 . . . . . . 7 1o ∈ V
1411, 12, 13fvmpt 5563 . . . . . 6 (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o)
1510, 14syl 14 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o)
16 eqidd 2166 . . . . . 6 (𝑖 = 𝑗 → 1o = 1o)
1716, 12, 13fvmpt 5563 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
1815, 17eqtr4d 2201 . . . 4 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
19 eqimss 3196 . . . 4 (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2018, 19syl 14 . . 3 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2120rgen 2519 . 2 𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)
22 fveq1 5485 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗))
23 fveq1 5485 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2422, 23sseq12d 3173 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2524ralbidv 2466 . . 3 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
26 df-nninf 7085 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
2725, 26elrab2 2885 . 2 ((𝑖 ∈ ω ↦ 1o) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
289, 21, 27mpbir2an 932 1 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wtru 1344  wcel 2136  wral 2444  Vcvv 2726  wss 3116  cmpt 4043  Oncon0 4341  suc csuc 4343  ωcom 4567  wf 5184  cfv 5188  (class class class)co 5842  1oc1o 6377  2oc2o 6378  𝑚 cmap 6614  xnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  nnnninf2  7091  nninffeq  13900
  Copyright terms: Public domain W3C validator