| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnninf | GIF version | ||
| Description: The point at infinity in ℕ∞ is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4711 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| infnninf | ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6509 | . . . . . 6 ⊢ 1o ∈ 2o | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o) |
| 3 | 2 | fmpttd 5720 | . . . 4 ⊢ (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
| 4 | 3 | mptru 1373 | . . 3 ⊢ (𝑖 ∈ ω ↦ 1o):ω⟶2o |
| 5 | 2on 6492 | . . . 4 ⊢ 2o ∈ On | |
| 6 | omex 4630 | . . . 4 ⊢ ω ∈ V | |
| 7 | elmapg 6729 | . . . 4 ⊢ ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)) | |
| 8 | 5, 6, 7 | mp2an 426 | . . 3 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
| 9 | 4, 8 | mpbir 146 | . 2 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) |
| 10 | peano2 4632 | . . . . . 6 ⊢ (𝑗 ∈ ω → suc 𝑗 ∈ ω) | |
| 11 | eqidd 2197 | . . . . . . 7 ⊢ (𝑖 = suc 𝑗 → 1o = 1o) | |
| 12 | eqid 2196 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o) | |
| 13 | 1oex 6491 | . . . . . . 7 ⊢ 1o ∈ V | |
| 14 | 11, 12, 13 | fvmpt 5641 | . . . . . 6 ⊢ (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
| 15 | 10, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
| 16 | eqidd 2197 | . . . . . 6 ⊢ (𝑖 = 𝑗 → 1o = 1o) | |
| 17 | 16, 12, 13 | fvmpt 5641 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o) |
| 18 | 15, 17 | eqtr4d 2232 | . . . 4 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
| 19 | eqimss 3238 | . . . 4 ⊢ (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
| 21 | 20 | rgen 2550 | . 2 ⊢ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗) |
| 22 | fveq1 5560 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗)) | |
| 23 | fveq1 5560 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
| 24 | 22, 23 | sseq12d 3215 | . . . 4 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
| 25 | 24 | ralbidv 2497 | . . 3 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
| 26 | df-nninf 7195 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} | |
| 27 | 25, 26 | elrab2 2923 | . 2 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
| 28 | 9, 21, 27 | mpbir2an 944 | 1 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⊆ wss 3157 ↦ cmpt 4095 Oncon0 4399 suc csuc 4401 ωcom 4627 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 1oc1o 6476 2oc2o 6477 ↑𝑚 cmap 6716 ℕ∞xnninf 7194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 df-map 6718 df-nninf 7195 |
| This theorem is referenced by: nnnninf2 7202 nninfwlpoimlemdc 7252 nninfct 12233 nninffeq 15751 nnnninfen 15752 |
| Copyright terms: Public domain | W3C validator |