ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf GIF version

Theorem infnninf 7185
Description: The point at infinity in is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4707 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
Assertion
Ref Expression
infnninf (𝑖 ∈ ω ↦ 1o) ∈ ℕ

Proof of Theorem infnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6497 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
32fmpttd 5714 . . . 4 (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o)
43mptru 1373 . . 3 (𝑖 ∈ ω ↦ 1o):ω⟶2o
5 2on 6480 . . . 4 2o ∈ On
6 omex 4626 . . . 4 ω ∈ V
7 elmapg 6717 . . . 4 ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o))
85, 6, 7mp2an 426 . . 3 ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)
94, 8mpbir 146 . 2 (𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω)
10 peano2 4628 . . . . . 6 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
11 eqidd 2194 . . . . . . 7 (𝑖 = suc 𝑗 → 1o = 1o)
12 eqid 2193 . . . . . . 7 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
13 1oex 6479 . . . . . . 7 1o ∈ V
1411, 12, 13fvmpt 5635 . . . . . 6 (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o)
1510, 14syl 14 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o)
16 eqidd 2194 . . . . . 6 (𝑖 = 𝑗 → 1o = 1o)
1716, 12, 13fvmpt 5635 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
1815, 17eqtr4d 2229 . . . 4 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
19 eqimss 3234 . . . 4 (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2018, 19syl 14 . . 3 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2120rgen 2547 . 2 𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)
22 fveq1 5554 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗))
23 fveq1 5554 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2422, 23sseq12d 3211 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2524ralbidv 2494 . . 3 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
26 df-nninf 7181 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
2725, 26elrab2 2920 . 2 ((𝑖 ∈ ω ↦ 1o) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
289, 21, 27mpbir2an 944 1 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2164  wral 2472  Vcvv 2760  wss 3154  cmpt 4091  Oncon0 4395  suc csuc 4397  ωcom 4623  wf 5251  cfv 5255  (class class class)co 5919  1oc1o 6464  2oc2o 6465  𝑚 cmap 6704  xnninf 7180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1o 6471  df-2o 6472  df-map 6706  df-nninf 7181
This theorem is referenced by:  nnnninf2  7188  nninfwlpoimlemdc  7238  nninfct  12181  nninffeq  15580  nnnninfen  15581
  Copyright terms: Public domain W3C validator