ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf GIF version

Theorem infnninf 7100
Description: The point at infinity in is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4658 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
Assertion
Ref Expression
infnninf (𝑖 ∈ ω ↦ 1o) ∈ ℕ

Proof of Theorem infnninf
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6421 . . . . . 6 1o ∈ 2o
21a1i 9 . . . . 5 ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
32fmpttd 5651 . . . 4 (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o)
43mptru 1357 . . 3 (𝑖 ∈ ω ↦ 1o):ω⟶2o
5 2on 6404 . . . 4 2o ∈ On
6 omex 4577 . . . 4 ω ∈ V
7 elmapg 6639 . . . 4 ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o))
85, 6, 7mp2an 424 . . 3 ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)
94, 8mpbir 145 . 2 (𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω)
10 peano2 4579 . . . . . 6 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
11 eqidd 2171 . . . . . . 7 (𝑖 = suc 𝑗 → 1o = 1o)
12 eqid 2170 . . . . . . 7 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
13 1oex 6403 . . . . . . 7 1o ∈ V
1411, 12, 13fvmpt 5573 . . . . . 6 (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o)
1510, 14syl 14 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o)
16 eqidd 2171 . . . . . 6 (𝑖 = 𝑗 → 1o = 1o)
1716, 12, 13fvmpt 5573 . . . . 5 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
1815, 17eqtr4d 2206 . . . 4 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
19 eqimss 3201 . . . 4 (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2018, 19syl 14 . . 3 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2120rgen 2523 . 2 𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)
22 fveq1 5495 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗))
23 fveq1 5495 . . . . 5 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
2422, 23sseq12d 3178 . . . 4 (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
2524ralbidv 2470 . . 3 (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
26 df-nninf 7097 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
2725, 26elrab2 2889 . 2 ((𝑖 ∈ ω ↦ 1o) ∈ ℕ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)))
289, 21, 27mpbir2an 937 1 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wtru 1349  wcel 2141  wral 2448  Vcvv 2730  wss 3121  cmpt 4050  Oncon0 4348  suc csuc 4350  ωcom 4574  wf 5194  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  xnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-nninf 7097
This theorem is referenced by:  nnnninf2  7103  nninfwlpoimlemdc  7153  nninffeq  14053
  Copyright terms: Public domain W3C validator