Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infnninf | GIF version |
Description: The point at infinity in ℕ∞ is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4658 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
Ref | Expression |
---|---|
infnninf | ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6421 | . . . . . 6 ⊢ 1o ∈ 2o | |
2 | 1 | a1i 9 | . . . . 5 ⊢ ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o) |
3 | 2 | fmpttd 5651 | . . . 4 ⊢ (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
4 | 3 | mptru 1357 | . . 3 ⊢ (𝑖 ∈ ω ↦ 1o):ω⟶2o |
5 | 2on 6404 | . . . 4 ⊢ 2o ∈ On | |
6 | omex 4577 | . . . 4 ⊢ ω ∈ V | |
7 | elmapg 6639 | . . . 4 ⊢ ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)) | |
8 | 5, 6, 7 | mp2an 424 | . . 3 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
9 | 4, 8 | mpbir 145 | . 2 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) |
10 | peano2 4579 | . . . . . 6 ⊢ (𝑗 ∈ ω → suc 𝑗 ∈ ω) | |
11 | eqidd 2171 | . . . . . . 7 ⊢ (𝑖 = suc 𝑗 → 1o = 1o) | |
12 | eqid 2170 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o) | |
13 | 1oex 6403 | . . . . . . 7 ⊢ 1o ∈ V | |
14 | 11, 12, 13 | fvmpt 5573 | . . . . . 6 ⊢ (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
15 | 10, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
16 | eqidd 2171 | . . . . . 6 ⊢ (𝑖 = 𝑗 → 1o = 1o) | |
17 | 16, 12, 13 | fvmpt 5573 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o) |
18 | 15, 17 | eqtr4d 2206 | . . . 4 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
19 | eqimss 3201 | . . . 4 ⊢ (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
21 | 20 | rgen 2523 | . 2 ⊢ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗) |
22 | fveq1 5495 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗)) | |
23 | fveq1 5495 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
24 | 22, 23 | sseq12d 3178 | . . . 4 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
25 | 24 | ralbidv 2470 | . . 3 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
26 | df-nninf 7097 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} | |
27 | 25, 26 | elrab2 2889 | . 2 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
28 | 9, 21, 27 | mpbir2an 937 | 1 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ⊆ wss 3121 ↦ cmpt 4050 Oncon0 4348 suc csuc 4350 ωcom 4574 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 2oc2o 6389 ↑𝑚 cmap 6626 ℕ∞xnninf 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1o 6395 df-2o 6396 df-map 6628 df-nninf 7097 |
This theorem is referenced by: nnnninf2 7103 nninfwlpoimlemdc 7153 nninffeq 14053 |
Copyright terms: Public domain | W3C validator |