ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf GIF version

Theorem infnninf 7030
Description: The point at infinity in (the constant sequence equal to 1o). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
infnninf (ω × {1o}) ∈ ℕ

Proof of Theorem infnninf
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 6329 . . . . . 6 1o ∈ V
21sucid 4347 . . . . 5 1o ∈ suc 1o
3 df-2o 6322 . . . . 5 2o = suc 1o
42, 3eleqtrri 2216 . . . 4 1o ∈ 2o
54fconst6 5330 . . 3 (ω × {1o}):ω⟶2o
6 2onn 6425 . . . . 5 2o ∈ ω
76elexi 2701 . . . 4 2o ∈ V
8 omex 4515 . . . 4 ω ∈ V
97, 8elmap 6579 . . 3 ((ω × {1o}) ∈ (2o𝑚 ω) ↔ (ω × {1o}):ω⟶2o)
105, 9mpbir 145 . 2 (ω × {1o}) ∈ (2o𝑚 ω)
11 peano2 4517 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
121fvconst2 5644 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o)
1311, 12syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = 1o)
141fvconst2 5644 . . . . 5 (𝑖 ∈ ω → ((ω × {1o})‘𝑖) = 1o)
1513, 14eqtr4d 2176 . . . 4 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖))
16 eqimss 3156 . . . 4 (((ω × {1o})‘suc 𝑖) = ((ω × {1o})‘𝑖) → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))
1715, 16syl 14 . . 3 (𝑖 ∈ ω → ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖))
1817rgen 2488 . 2 𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)
19 fveq1 5428 . . . . 5 (𝑓 = (ω × {1o}) → (𝑓‘suc 𝑖) = ((ω × {1o})‘suc 𝑖))
20 fveq1 5428 . . . . 5 (𝑓 = (ω × {1o}) → (𝑓𝑖) = ((ω × {1o})‘𝑖))
2119, 20sseq12d 3133 . . . 4 (𝑓 = (ω × {1o}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
2221ralbidv 2438 . . 3 (𝑓 = (ω × {1o}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
23 df-nninf 7015 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2422, 23elrab2 2847 . 2 ((ω × {1o}) ∈ ℕ ↔ ((ω × {1o}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {1o})‘suc 𝑖) ⊆ ((ω × {1o})‘𝑖)))
2510, 18, 24mpbir2an 927 1 (ω × {1o}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 1481  wral 2417  wss 3076  {csn 3532  suc csuc 4295  ωcom 4512   × cxp 4545  wf 5127  cfv 5131  (class class class)co 5782  1oc1o 6314  2oc2o 6315  𝑚 cmap 6550  xnninf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015
This theorem is referenced by:  fxnn0nninf  10242  nninffeq  13391
  Copyright terms: Public domain W3C validator