| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnninf | GIF version | ||
| Description: The point at infinity in ℕ∞ is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4743 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| infnninf | ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6558 | . . . . . 6 ⊢ 1o ∈ 2o | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ ((⊤ ∧ 𝑖 ∈ ω) → 1o ∈ 2o) |
| 3 | 2 | fmpttd 5763 | . . . 4 ⊢ (⊤ → (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
| 4 | 3 | mptru 1384 | . . 3 ⊢ (𝑖 ∈ ω ↦ 1o):ω⟶2o |
| 5 | 2on 6541 | . . . 4 ⊢ 2o ∈ On | |
| 6 | omex 4662 | . . . 4 ⊢ ω ∈ V | |
| 7 | elmapg 6778 | . . . 4 ⊢ ((2o ∈ On ∧ ω ∈ V) → ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o)) | |
| 8 | 5, 6, 7 | mp2an 426 | . . 3 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ↔ (𝑖 ∈ ω ↦ 1o):ω⟶2o) |
| 9 | 4, 8 | mpbir 146 | . 2 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) |
| 10 | peano2 4664 | . . . . . 6 ⊢ (𝑗 ∈ ω → suc 𝑗 ∈ ω) | |
| 11 | eqidd 2210 | . . . . . . 7 ⊢ (𝑖 = suc 𝑗 → 1o = 1o) | |
| 12 | eqid 2209 | . . . . . . 7 ⊢ (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o) | |
| 13 | 1oex 6540 | . . . . . . 7 ⊢ 1o ∈ V | |
| 14 | 11, 12, 13 | fvmpt 5684 | . . . . . 6 ⊢ (suc 𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
| 15 | 10, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = 1o) |
| 16 | eqidd 2210 | . . . . . 6 ⊢ (𝑖 = 𝑗 → 1o = 1o) | |
| 17 | 16, 12, 13 | fvmpt 5684 | . . . . 5 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o) |
| 18 | 15, 17 | eqtr4d 2245 | . . . 4 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
| 19 | eqimss 3258 | . . . 4 ⊢ (((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗) → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗)) |
| 21 | 20 | rgen 2563 | . 2 ⊢ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗) |
| 22 | fveq1 5602 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘suc 𝑗) = ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗)) | |
| 23 | fveq1 5602 | . . . . 5 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (𝑓‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗)) | |
| 24 | 22, 23 | sseq12d 3235 | . . . 4 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
| 25 | 24 | ralbidv 2510 | . . 3 ⊢ (𝑓 = (𝑖 ∈ ω ↦ 1o) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
| 26 | df-nninf 7255 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} | |
| 27 | 25, 26 | elrab2 2942 | . 2 ⊢ ((𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ ↔ ((𝑖 ∈ ω ↦ 1o) ∈ (2o ↑𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑖 ∈ ω ↦ 1o)‘suc 𝑗) ⊆ ((𝑖 ∈ ω ↦ 1o)‘𝑗))) |
| 28 | 9, 21, 27 | mpbir2an 947 | 1 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ⊤wtru 1376 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ⊆ wss 3177 ↦ cmpt 4124 Oncon0 4431 suc csuc 4433 ωcom 4659 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 1oc1o 6525 2oc2o 6526 ↑𝑚 cmap 6765 ℕ∞xnninf 7254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1o 6532 df-2o 6533 df-map 6767 df-nninf 7255 |
| This theorem is referenced by: nnnninf2 7262 nninfwlpoimlemdc 7312 nninfct 12528 nninffeq 16297 nnnninfen 16298 |
| Copyright terms: Public domain | W3C validator |