ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6539
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6526 . 2 2o = suc 1o
2 df-suc 4436 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6538 . . . 4 1o = {∅}
43uneq1i 3331 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3650 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2231 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2232 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3172  c0 3468  {csn 3643  {cpr 3644  suc csuc 4430  1oc1o 6518  2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-pr 3650  df-suc 4436  df-1o 6525  df-2o 6526
This theorem is referenced by:  df2o2  6540  2oconcl  6548  0lt2o  6550  1lt2o  6551  el2oss1o  6552  rex2dom  6934  en2  6936  en2eqpr  7030  nninfisol  7261  finomni  7268  exmidomniim  7269  exmidomni  7270  ismkvnex  7283  nninfwlpoimlemginf  7304  pr2cv1  7329  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342  xp2dju  7358  pw1nel3  7377  sucpw1nel3  7379  nninfctlemfo  12476  unct  12928  fnpr2o  13286  fnpr2ob  13287  fvprif  13290  xpsfrnel  13291  xpsfeq  13292  2o01f  16131  2omap  16132  nninfalllem1  16147  nninfall  16148  nninfsellemqall  16154  nninfomnilem  16157  nnnninfex  16161  nninfnfiinf  16162
  Copyright terms: Public domain W3C validator