| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6475 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 4406 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 6487 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 3313 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 3629 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2220 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2221 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∪ cun 3155 ∅c0 3450 {csn 3622 {cpr 3623 suc csuc 4400 1oc1o 6467 2oc2o 6468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-pr 3629 df-suc 4406 df-1o 6474 df-2o 6475 |
| This theorem is referenced by: df2o2 6489 2oconcl 6497 0lt2o 6499 1lt2o 6500 el2oss1o 6501 en2eqpr 6968 nninfisol 7199 finomni 7206 exmidomniim 7207 exmidomni 7208 ismkvnex 7221 nninfwlpoimlemginf 7242 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 xp2dju 7282 pw1nel3 7298 sucpw1nel3 7300 nninfctlemfo 12207 unct 12659 fnpr2o 12982 fnpr2ob 12983 fvprif 12986 xpsfrnel 12987 xpsfeq 12988 2o01f 15641 nninfalllem1 15652 nninfall 15653 nninfsellemqall 15659 nninfomnilem 15662 |
| Copyright terms: Public domain | W3C validator |