| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6502 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 4417 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 6514 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 3322 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 3639 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2228 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2229 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∪ cun 3163 ∅c0 3459 {csn 3632 {cpr 3633 suc csuc 4411 1oc1o 6494 2oc2o 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-nul 3460 df-pr 3639 df-suc 4417 df-1o 6501 df-2o 6502 |
| This theorem is referenced by: df2o2 6516 2oconcl 6524 0lt2o 6526 1lt2o 6527 el2oss1o 6528 rex2dom 6909 en2 6911 en2eqpr 7003 nninfisol 7234 finomni 7241 exmidomniim 7242 exmidomni 7243 ismkvnex 7256 nninfwlpoimlemginf 7277 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 xp2dju 7326 pw1nel3 7342 sucpw1nel3 7344 nninfctlemfo 12303 unct 12755 fnpr2o 13113 fnpr2ob 13114 fvprif 13117 xpsfrnel 13118 xpsfeq 13119 2o01f 15864 2omap 15865 nninfalllem1 15878 nninfall 15879 nninfsellemqall 15885 nninfomnilem 15888 nnnninfex 15892 nninfnfiinf 15893 |
| Copyright terms: Public domain | W3C validator |