ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6574
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6561 . 2 2o = suc 1o
2 df-suc 4461 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6573 . . . 4 1o = {∅}
43uneq1i 3354 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3673 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2253 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2254 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  c0 3491  {csn 3666  {cpr 3667  suc csuc 4455  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-pr 3673  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  df2o2  6575  2oconcl  6583  0lt2o  6585  1lt2o  6586  el2oss1o  6587  rex2dom  6969  en2  6971  en2eqpr  7065  nninfisol  7296  finomni  7303  exmidomniim  7304  exmidomni  7305  ismkvnex  7318  nninfwlpoimlemginf  7339  pr2cv1  7364  exmidfodomrlemr  7376  exmidfodomrlemrALT  7377  xp2dju  7393  pw1nel3  7412  sucpw1nel3  7414  nninfctlemfo  12556  unct  13008  fnpr2o  13367  fnpr2ob  13368  fvprif  13371  xpsfrnel  13372  xpsfeq  13373  2o01f  16317  2omap  16318  nninfalllem1  16333  nninfall  16334  nninfsellemqall  16340  nninfomnilem  16343  nnnninfex  16347  nninfnfiinf  16348
  Copyright terms: Public domain W3C validator