ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6516
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6503 . 2 2o = suc 1o
2 df-suc 4418 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6515 . . . 4 1o = {∅}
43uneq1i 3323 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3640 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2229 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2230 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3164  c0 3460  {csn 3633  {cpr 3634  suc csuc 4412  1oc1o 6495  2oc2o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-pr 3640  df-suc 4418  df-1o 6502  df-2o 6503
This theorem is referenced by:  df2o2  6517  2oconcl  6525  0lt2o  6527  1lt2o  6528  el2oss1o  6529  rex2dom  6910  en2  6912  en2eqpr  7004  nninfisol  7235  finomni  7242  exmidomniim  7243  exmidomni  7244  ismkvnex  7257  nninfwlpoimlemginf  7278  exmidfodomrlemr  7310  exmidfodomrlemrALT  7311  xp2dju  7327  pw1nel3  7343  sucpw1nel3  7345  nninfctlemfo  12361  unct  12813  fnpr2o  13171  fnpr2ob  13172  fvprif  13175  xpsfrnel  13176  xpsfeq  13177  2o01f  15931  2omap  15932  nninfalllem1  15945  nninfall  15946  nninfsellemqall  15952  nninfomnilem  15955  nnnninfex  15959  nninfnfiinf  15960
  Copyright terms: Public domain W3C validator