ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6497
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6484 . 2 2o = suc 1o
2 df-suc 4407 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6496 . . . 4 1o = {∅}
43uneq1i 3314 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3630 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2220 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2221 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155  c0 3451  {csn 3623  {cpr 3624  suc csuc 4401  1oc1o 6476  2oc2o 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-pr 3630  df-suc 4407  df-1o 6483  df-2o 6484
This theorem is referenced by:  df2o2  6498  2oconcl  6506  0lt2o  6508  1lt2o  6509  el2oss1o  6510  en2eqpr  6977  nninfisol  7208  finomni  7215  exmidomniim  7216  exmidomni  7217  ismkvnex  7230  nninfwlpoimlemginf  7251  exmidfodomrlemr  7283  exmidfodomrlemrALT  7284  xp2dju  7300  pw1nel3  7316  sucpw1nel3  7318  nninfctlemfo  12234  unct  12686  fnpr2o  13043  fnpr2ob  13044  fvprif  13047  xpsfrnel  13048  xpsfeq  13049  2o01f  15749  2omap  15750  nninfalllem1  15763  nninfall  15764  nninfsellemqall  15770  nninfomnilem  15773  nnnninfex  15777  nninfnfiinf  15778
  Copyright terms: Public domain W3C validator