Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6385 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 4349 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 6397 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 3272 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 3583 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2189 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2190 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 ∅c0 3409 {csn 3576 {cpr 3577 suc csuc 4343 1oc1o 6377 2oc2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-pr 3583 df-suc 4349 df-1o 6384 df-2o 6385 |
This theorem is referenced by: df2o2 6399 2oconcl 6407 0lt2o 6409 1lt2o 6410 el2oss1o 6411 en2eqpr 6873 nninfisol 7097 finomni 7104 exmidomniim 7105 exmidomni 7106 ismkvnex 7119 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 xp2dju 7171 pw1nel3 7187 sucpw1nel3 7189 unct 12375 2o01f 13876 nninfalllem1 13888 nninfall 13889 nninfsellemqall 13895 nninfomnilem 13898 |
Copyright terms: Public domain | W3C validator |