| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6561 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 4461 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 6573 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 3354 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 3673 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2253 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2254 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ∅c0 3491 {csn 3666 {cpr 3667 suc csuc 4455 1oc1o 6553 2oc2o 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-pr 3673 df-suc 4461 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: df2o2 6575 2oconcl 6583 0lt2o 6585 1lt2o 6586 el2oss1o 6587 rex2dom 6969 en2 6971 en2eqpr 7065 nninfisol 7296 finomni 7303 exmidomniim 7304 exmidomni 7305 ismkvnex 7318 nninfwlpoimlemginf 7339 pr2cv1 7364 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 xp2dju 7393 pw1nel3 7412 sucpw1nel3 7414 nninfctlemfo 12556 unct 13008 fnpr2o 13367 fnpr2ob 13368 fvprif 13371 xpsfrnel 13372 xpsfeq 13373 2o01f 16317 2omap 16318 nninfalllem1 16333 nninfall 16334 nninfsellemqall 16340 nninfomnilem 16343 nnnninfex 16347 nninfnfiinf 16348 |
| Copyright terms: Public domain | W3C validator |