| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6503 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 4418 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 6515 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 3323 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 3640 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2229 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2230 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3164 ∅c0 3460 {csn 3633 {cpr 3634 suc csuc 4412 1oc1o 6495 2oc2o 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-pr 3640 df-suc 4418 df-1o 6502 df-2o 6503 |
| This theorem is referenced by: df2o2 6517 2oconcl 6525 0lt2o 6527 1lt2o 6528 el2oss1o 6529 rex2dom 6910 en2 6912 en2eqpr 7004 nninfisol 7235 finomni 7242 exmidomniim 7243 exmidomni 7244 ismkvnex 7257 nninfwlpoimlemginf 7278 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 xp2dju 7327 pw1nel3 7343 sucpw1nel3 7345 nninfctlemfo 12361 unct 12813 fnpr2o 13171 fnpr2ob 13172 fvprif 13175 xpsfrnel 13176 xpsfeq 13177 2o01f 15931 2omap 15932 nninfalllem1 15945 nninfall 15946 nninfsellemqall 15952 nninfomnilem 15955 nnnninfex 15959 nninfnfiinf 15960 |
| Copyright terms: Public domain | W3C validator |