ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6485
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6472 . 2 2o = suc 1o
2 df-suc 4403 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6484 . . . 4 1o = {∅}
43uneq1i 3310 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3626 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2217 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2218 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3152  c0 3447  {csn 3619  {cpr 3620  suc csuc 4397  1oc1o 6464  2oc2o 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-nul 3448  df-pr 3626  df-suc 4403  df-1o 6471  df-2o 6472
This theorem is referenced by:  df2o2  6486  2oconcl  6494  0lt2o  6496  1lt2o  6497  el2oss1o  6498  en2eqpr  6965  nninfisol  7194  finomni  7201  exmidomniim  7202  exmidomni  7203  ismkvnex  7216  nninfwlpoimlemginf  7237  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265  xp2dju  7277  pw1nel3  7293  sucpw1nel3  7295  nninfctlemfo  12180  unct  12602  fnpr2o  12925  fnpr2ob  12926  fvprif  12929  xpsfrnel  12930  xpsfeq  12931  2o01f  15557  nninfalllem1  15568  nninfall  15569  nninfsellemqall  15575  nninfomnilem  15578
  Copyright terms: Public domain W3C validator