![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6470 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 4402 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 6482 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 3309 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 3625 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2217 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2218 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cun 3151 ∅c0 3446 {csn 3618 {cpr 3619 suc csuc 4396 1oc1o 6462 2oc2o 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-pr 3625 df-suc 4402 df-1o 6469 df-2o 6470 |
This theorem is referenced by: df2o2 6484 2oconcl 6492 0lt2o 6494 1lt2o 6495 el2oss1o 6496 en2eqpr 6963 nninfisol 7192 finomni 7199 exmidomniim 7200 exmidomni 7201 ismkvnex 7214 nninfwlpoimlemginf 7235 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 xp2dju 7275 pw1nel3 7291 sucpw1nel3 7293 nninfctlemfo 12177 unct 12599 fnpr2o 12922 fnpr2ob 12923 fvprif 12926 xpsfrnel 12927 xpsfeq 12928 2o01f 15487 nninfalllem1 15498 nninfall 15499 nninfsellemqall 15505 nninfomnilem 15508 |
Copyright terms: Public domain | W3C validator |