| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 | ⊢ 2o = {∅, 1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6526 | . 2 ⊢ 2o = suc 1o | |
| 2 | df-suc 4436 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
| 3 | df1o2 6538 | . . . 4 ⊢ 1o = {∅} | |
| 4 | 3 | uneq1i 3331 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
| 5 | df-pr 3650 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 6 | 4, 5 | eqtr4i 2231 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
| 7 | 1, 2, 6 | 3eqtri 2232 | 1 ⊢ 2o = {∅, 1o} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3172 ∅c0 3468 {csn 3643 {cpr 3644 suc csuc 4430 1oc1o 6518 2oc2o 6519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-pr 3650 df-suc 4436 df-1o 6525 df-2o 6526 |
| This theorem is referenced by: df2o2 6540 2oconcl 6548 0lt2o 6550 1lt2o 6551 el2oss1o 6552 rex2dom 6934 en2 6936 en2eqpr 7030 nninfisol 7261 finomni 7268 exmidomniim 7269 exmidomni 7270 ismkvnex 7283 nninfwlpoimlemginf 7304 pr2cv1 7329 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 xp2dju 7358 pw1nel3 7377 sucpw1nel3 7379 nninfctlemfo 12476 unct 12928 fnpr2o 13286 fnpr2ob 13287 fvprif 13290 xpsfrnel 13291 xpsfeq 13292 2o01f 16131 2omap 16132 nninfalllem1 16147 nninfall 16148 nninfsellemqall 16154 nninfomnilem 16157 nnnninfex 16161 nninfnfiinf 16162 |
| Copyright terms: Public domain | W3C validator |