ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6398
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6385 . 2 2o = suc 1o
2 df-suc 4349 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6397 . . . 4 1o = {∅}
43uneq1i 3272 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3583 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2189 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2190 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cun 3114  c0 3409  {csn 3576  {cpr 3577  suc csuc 4343  1oc1o 6377  2oc2o 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-pr 3583  df-suc 4349  df-1o 6384  df-2o 6385
This theorem is referenced by:  df2o2  6399  2oconcl  6407  0lt2o  6409  1lt2o  6410  el2oss1o  6411  en2eqpr  6873  nninfisol  7097  finomni  7104  exmidomniim  7105  exmidomni  7106  ismkvnex  7119  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  xp2dju  7171  pw1nel3  7187  sucpw1nel3  7189  unct  12375  2o01f  13876  nninfalllem1  13888  nninfall  13889  nninfsellemqall  13895  nninfomnilem  13898
  Copyright terms: Public domain W3C validator