ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 GIF version

Theorem df2o3 6409
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3 2o = {∅, 1o}

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6396 . 2 2o = suc 1o
2 df-suc 4356 . 2 suc 1o = (1o ∪ {1o})
3 df1o2 6408 . . . 4 1o = {∅}
43uneq1i 3277 . . 3 (1o ∪ {1o}) = ({∅} ∪ {1o})
5 df-pr 3590 . . 3 {∅, 1o} = ({∅} ∪ {1o})
64, 5eqtr4i 2194 . 2 (1o ∪ {1o}) = {∅, 1o}
71, 2, 63eqtri 2195 1 2o = {∅, 1o}
Colors of variables: wff set class
Syntax hints:   = wceq 1348  cun 3119  c0 3414  {csn 3583  {cpr 3584  suc csuc 4350  1oc1o 6388  2oc2o 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-pr 3590  df-suc 4356  df-1o 6395  df-2o 6396
This theorem is referenced by:  df2o2  6410  2oconcl  6418  0lt2o  6420  1lt2o  6421  el2oss1o  6422  en2eqpr  6885  nninfisol  7109  finomni  7116  exmidomniim  7117  exmidomni  7118  ismkvnex  7131  nninfwlpoimlemginf  7152  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  xp2dju  7192  pw1nel3  7208  sucpw1nel3  7210  unct  12397  2o01f  14029  nninfalllem1  14041  nninfall  14042  nninfsellemqall  14048  nninfomnilem  14051
  Copyright terms: Public domain W3C validator