![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2o3 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 | ⊢ 2o = {∅, 1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6472 | . 2 ⊢ 2o = suc 1o | |
2 | df-suc 4403 | . 2 ⊢ suc 1o = (1o ∪ {1o}) | |
3 | df1o2 6484 | . . . 4 ⊢ 1o = {∅} | |
4 | 3 | uneq1i 3310 | . . 3 ⊢ (1o ∪ {1o}) = ({∅} ∪ {1o}) |
5 | df-pr 3626 | . . 3 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
6 | 4, 5 | eqtr4i 2217 | . 2 ⊢ (1o ∪ {1o}) = {∅, 1o} |
7 | 1, 2, 6 | 3eqtri 2218 | 1 ⊢ 2o = {∅, 1o} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cun 3152 ∅c0 3447 {csn 3619 {cpr 3620 suc csuc 4397 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 df-pr 3626 df-suc 4403 df-1o 6471 df-2o 6472 |
This theorem is referenced by: df2o2 6486 2oconcl 6494 0lt2o 6496 1lt2o 6497 el2oss1o 6498 en2eqpr 6965 nninfisol 7194 finomni 7201 exmidomniim 7202 exmidomni 7203 ismkvnex 7216 nninfwlpoimlemginf 7237 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 xp2dju 7277 pw1nel3 7293 sucpw1nel3 7295 nninfctlemfo 12180 unct 12602 fnpr2o 12925 fnpr2ob 12926 fvprif 12929 xpsfrnel 12930 xpsfeq 12931 2o01f 15557 nninfalllem1 15568 nninfall 15569 nninfsellemqall 15575 nninfomnilem 15578 |
Copyright terms: Public domain | W3C validator |