Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano4nninf GIF version

Theorem peano4nninf 16283
Description: The successor function on is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
Hypothesis
Ref Expression
peano4nninf.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
peano4nninf 𝑆:ℕ1-1→ℕ
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem peano4nninf
Dummy variables 𝑘 𝑥 𝑦 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano4nninf.s . . 3 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
21nnsf 16282 . 2 𝑆:ℕ⟶ℕ
3 fveq1 5602 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓‘suc 𝑗) = (𝑥‘suc 𝑗))
4 fveq1 5602 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓𝑗) = (𝑥𝑗))
53, 4sseq12d 3235 . . . . . . . . . 10 (𝑓 = 𝑥 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
65ralbidv 2510 . . . . . . . . 9 (𝑓 = 𝑥 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
7 df-nninf 7255 . . . . . . . . 9 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
86, 7elrab2 2942 . . . . . . . 8 (𝑥 ∈ ℕ ↔ (𝑥 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
98simplbi 274 . . . . . . 7 (𝑥 ∈ ℕ𝑥 ∈ (2o𝑚 ω))
10 elmapfn 6788 . . . . . . 7 (𝑥 ∈ (2o𝑚 ω) → 𝑥 Fn ω)
119, 10syl 14 . . . . . 6 (𝑥 ∈ ℕ𝑥 Fn ω)
1211ad2antrr 488 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 Fn ω)
13 fveq1 5602 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓‘suc 𝑗) = (𝑦‘suc 𝑗))
14 fveq1 5602 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓𝑗) = (𝑦𝑗))
1513, 14sseq12d 3235 . . . . . . . . . 10 (𝑓 = 𝑦 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1615ralbidv 2510 . . . . . . . . 9 (𝑓 = 𝑦 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1716, 7elrab2 2942 . . . . . . . 8 (𝑦 ∈ ℕ ↔ (𝑦 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1817simplbi 274 . . . . . . 7 (𝑦 ∈ ℕ𝑦 ∈ (2o𝑚 ω))
19 elmapfn 6788 . . . . . . 7 (𝑦 ∈ (2o𝑚 ω) → 𝑦 Fn ω)
2018, 19syl 14 . . . . . 6 (𝑦 ∈ ℕ𝑦 Fn ω)
2120ad2antlr 489 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑦 Fn ω)
22 simplr 528 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑆𝑦))
2322fveq1d 5605 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = ((𝑆𝑦)‘suc 𝑘))
24 fveq1 5602 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝑝 𝑖) = (𝑥 𝑖))
2524ifeq2d 3601 . . . . . . . . . . 11 (𝑝 = 𝑥 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑥 𝑖)))
2625mpteq2dv 4154 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
27 omex 4662 . . . . . . . . . . 11 ω ∈ V
2827mptex 5838 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))) ∈ V
2926, 1, 28fvmpt 5684 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
3029ad3antrrr 492 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
31 simpr 110 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3231eqeq1d 2218 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑖 = ∅ ↔ suc 𝑘 = ∅))
3331unieqd 3878 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3433fveq2d 5607 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑥 𝑖) = (𝑥 suc 𝑘))
3532, 34ifbieq2d 3607 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑥 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
36 peano2 4664 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
3736adantl 277 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
38 1lt2o 6558 . . . . . . . . . 10 1o ∈ 2o
3938a1i 9 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 1o ∈ 2o)
40 nninff 7257 . . . . . . . . . . 11 (𝑥 ∈ ℕ𝑥:ω⟶2o)
4140ad3antrrr 492 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑥:ω⟶2o)
42 nnpredcl 4692 . . . . . . . . . . 11 (suc 𝑘 ∈ ω → suc 𝑘 ∈ ω)
4337, 42syl 14 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
4441, 43ffvelcdmd 5744 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) ∈ 2o)
45 nndceq0 4687 . . . . . . . . . 10 (suc 𝑘 ∈ ω → DECID suc 𝑘 = ∅)
4637, 45syl 14 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → DECID suc 𝑘 = ∅)
4739, 44, 46ifcldcd 3620 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) ∈ 2o)
4830, 35, 37, 47fvmptd 5688 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
49 peano3 4665 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ≠ ∅)
5049adantl 277 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ≠ ∅)
5150neneqd 2401 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ¬ suc 𝑘 = ∅)
5251iffalsed 3592 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) = (𝑥 suc 𝑘))
53 nnord 4681 . . . . . . . . . . 11 (𝑘 ∈ ω → Ord 𝑘)
54 ordtr 4446 . . . . . . . . . . 11 (Ord 𝑘 → Tr 𝑘)
5553, 54syl 14 . . . . . . . . . 10 (𝑘 ∈ ω → Tr 𝑘)
56 unisucg 4482 . . . . . . . . . 10 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
5755, 56mpbid 147 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
5857fveq2d 5607 . . . . . . . 8 (𝑘 ∈ ω → (𝑥 suc 𝑘) = (𝑥𝑘))
5958adantl 277 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) = (𝑥𝑘))
6048, 52, 593eqtrd 2246 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = (𝑥𝑘))
61 fveq1 5602 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑝 𝑖) = (𝑦 𝑖))
6261ifeq2d 3601 . . . . . . . . . . 11 (𝑝 = 𝑦 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑦 𝑖)))
6362mpteq2dv 4154 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6427mptex 5838 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))) ∈ V
6563, 1, 64fvmpt 5684 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6665ad3antlr 493 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6733fveq2d 5607 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑦 𝑖) = (𝑦 suc 𝑘))
6832, 67ifbieq2d 3607 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑦 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
69 nninff 7257 . . . . . . . . . . 11 (𝑦 ∈ ℕ𝑦:ω⟶2o)
7069ad3antlr 493 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑦:ω⟶2o)
7170, 43ffvelcdmd 5744 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) ∈ 2o)
7239, 71, 46ifcldcd 3620 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) ∈ 2o)
7366, 68, 37, 72fvmptd 5688 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
7451iffalsed 3592 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) = (𝑦 suc 𝑘))
7557fveq2d 5607 . . . . . . . 8 (𝑘 ∈ ω → (𝑦 suc 𝑘) = (𝑦𝑘))
7675adantl 277 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) = (𝑦𝑘))
7773, 74, 763eqtrd 2246 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = (𝑦𝑘))
7823, 60, 773eqtr3d 2250 . . . . 5 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥𝑘) = (𝑦𝑘))
7912, 21, 78eqfnfvd 5708 . . . 4 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 = 𝑦)
8079ex 115 . . 3 ((𝑥 ∈ ℕ𝑦 ∈ ℕ) → ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦))
8180rgen2a 2564 . 2 𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)
82 dff13 5865 . 2 (𝑆:ℕ1-1→ℕ ↔ (𝑆:ℕ⟶ℕ ∧ ∀𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)))
832, 81, 82mpbir2an 947 1 𝑆:ℕ1-1→ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 838   = wceq 1375  wcel 2180  wne 2380  wral 2488  wss 3177  c0 3471  ifcif 3582   cuni 3867  cmpt 4124  Tr wtr 4161  Ord word 4430  suc csuc 4433  ωcom 4659   Fn wfn 5289  wf 5290  1-1wf1 5291  cfv 5294  (class class class)co 5974  1oc1o 6525  2oc2o 6526  𝑚 cmap 6765  xnninf 7254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1o 6532  df-2o 6533  df-map 6767  df-nninf 7255
This theorem is referenced by:  exmidsbthrlem  16301
  Copyright terms: Public domain W3C validator