Step | Hyp | Ref
| Expression |
1 | | peano4nninf.s |
. . 3
β’ π = (π β ββ β¦
(π β Ο β¦
if(π = β
,
1o, (πββͺ π)))) |
2 | 1 | nnsf 14724 |
. 2
β’ π:βββΆββ |
3 | | fveq1 5514 |
. . . . . . . . . . 11
β’ (π = π₯ β (πβsuc π) = (π₯βsuc π)) |
4 | | fveq1 5514 |
. . . . . . . . . . 11
β’ (π = π₯ β (πβπ) = (π₯βπ)) |
5 | 3, 4 | sseq12d 3186 |
. . . . . . . . . 10
β’ (π = π₯ β ((πβsuc π) β (πβπ) β (π₯βsuc π) β (π₯βπ))) |
6 | 5 | ralbidv 2477 |
. . . . . . . . 9
β’ (π = π₯ β (βπ β Ο (πβsuc π) β (πβπ) β βπ β Ο (π₯βsuc π) β (π₯βπ))) |
7 | | df-nninf 7118 |
. . . . . . . . 9
β’
ββ = {π β (2o
βπ Ο) β£ βπ β Ο (πβsuc π) β (πβπ)} |
8 | 6, 7 | elrab2 2896 |
. . . . . . . 8
β’ (π₯ β
ββ β (π₯ β (2o
βπ Ο) β§ βπ β Ο (π₯βsuc π) β (π₯βπ))) |
9 | 8 | simplbi 274 |
. . . . . . 7
β’ (π₯ β
ββ β π₯ β (2o
βπ Ο)) |
10 | | elmapfn 6670 |
. . . . . . 7
β’ (π₯ β (2o
βπ Ο) β π₯ Fn Ο) |
11 | 9, 10 | syl 14 |
. . . . . 6
β’ (π₯ β
ββ β π₯ Fn Ο) |
12 | 11 | ad2antrr 488 |
. . . . 5
β’ (((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β π₯ Fn Ο) |
13 | | fveq1 5514 |
. . . . . . . . . . 11
β’ (π = π¦ β (πβsuc π) = (π¦βsuc π)) |
14 | | fveq1 5514 |
. . . . . . . . . . 11
β’ (π = π¦ β (πβπ) = (π¦βπ)) |
15 | 13, 14 | sseq12d 3186 |
. . . . . . . . . 10
β’ (π = π¦ β ((πβsuc π) β (πβπ) β (π¦βsuc π) β (π¦βπ))) |
16 | 15 | ralbidv 2477 |
. . . . . . . . 9
β’ (π = π¦ β (βπ β Ο (πβsuc π) β (πβπ) β βπ β Ο (π¦βsuc π) β (π¦βπ))) |
17 | 16, 7 | elrab2 2896 |
. . . . . . . 8
β’ (π¦ β
ββ β (π¦ β (2o
βπ Ο) β§ βπ β Ο (π¦βsuc π) β (π¦βπ))) |
18 | 17 | simplbi 274 |
. . . . . . 7
β’ (π¦ β
ββ β π¦ β (2o
βπ Ο)) |
19 | | elmapfn 6670 |
. . . . . . 7
β’ (π¦ β (2o
βπ Ο) β π¦ Fn Ο) |
20 | 18, 19 | syl 14 |
. . . . . 6
β’ (π¦ β
ββ β π¦ Fn Ο) |
21 | 20 | ad2antlr 489 |
. . . . 5
β’ (((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β π¦ Fn Ο) |
22 | | simplr 528 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (πβπ₯) = (πβπ¦)) |
23 | 22 | fveq1d 5517 |
. . . . . 6
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β ((πβπ₯)βsuc π) = ((πβπ¦)βsuc π)) |
24 | | fveq1 5514 |
. . . . . . . . . . . 12
β’ (π = π₯ β (πββͺ π) = (π₯ββͺ π)) |
25 | 24 | ifeq2d 3552 |
. . . . . . . . . . 11
β’ (π = π₯ β if(π = β
, 1o, (πββͺ π))
= if(π = β
,
1o, (π₯ββͺ π))) |
26 | 25 | mpteq2dv 4094 |
. . . . . . . . . 10
β’ (π = π₯ β (π β Ο β¦ if(π = β
, 1o, (πββͺ π)))
= (π β Ο β¦
if(π = β
,
1o, (π₯ββͺ π)))) |
27 | | omex 4592 |
. . . . . . . . . . 11
β’ Ο
β V |
28 | 27 | mptex 5742 |
. . . . . . . . . 10
β’ (π β Ο β¦ if(π = β
, 1o,
(π₯ββͺ π)))
β V |
29 | 26, 1, 28 | fvmpt 5593 |
. . . . . . . . 9
β’ (π₯ β
ββ β (πβπ₯) = (π β Ο β¦ if(π = β
, 1o, (π₯ββͺ π)))) |
30 | 29 | ad3antrrr 492 |
. . . . . . . 8
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (πβπ₯) = (π β Ο β¦ if(π = β
, 1o, (π₯ββͺ π)))) |
31 | | simpr 110 |
. . . . . . . . . 10
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β π = suc π) |
32 | 31 | eqeq1d 2186 |
. . . . . . . . 9
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β (π = β
β suc π = β
)) |
33 | 31 | unieqd 3820 |
. . . . . . . . . 10
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β βͺ π = βͺ
suc π) |
34 | 33 | fveq2d 5519 |
. . . . . . . . 9
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β (π₯ββͺ π) = (π₯ββͺ suc π)) |
35 | 32, 34 | ifbieq2d 3558 |
. . . . . . . 8
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β if(π = β
, 1o, (π₯ββͺ π))
= if(suc π = β
,
1o, (π₯ββͺ suc π))) |
36 | | peano2 4594 |
. . . . . . . . 9
β’ (π β Ο β suc π β
Ο) |
37 | 36 | adantl 277 |
. . . . . . . 8
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β suc π β
Ο) |
38 | | 1lt2o 6442 |
. . . . . . . . . 10
β’
1o β 2o |
39 | 38 | a1i 9 |
. . . . . . . . 9
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β 1o β
2o) |
40 | | nninff 7120 |
. . . . . . . . . . 11
β’ (π₯ β
ββ β π₯:ΟβΆ2o) |
41 | 40 | ad3antrrr 492 |
. . . . . . . . . 10
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β π₯:ΟβΆ2o) |
42 | | nnpredcl 4622 |
. . . . . . . . . . 11
β’ (suc
π β Ο β
βͺ suc π β Ο) |
43 | 37, 42 | syl 14 |
. . . . . . . . . 10
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β βͺ suc π β Ο) |
44 | 41, 43 | ffvelcdmd 5652 |
. . . . . . . . 9
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (π₯ββͺ suc π) β
2o) |
45 | | nndceq0 4617 |
. . . . . . . . . 10
β’ (suc
π β Ο β
DECID suc π
= β
) |
46 | 37, 45 | syl 14 |
. . . . . . . . 9
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β DECID
suc π =
β
) |
47 | 39, 44, 46 | ifcldcd 3570 |
. . . . . . . 8
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β if(suc π = β
, 1o,
(π₯ββͺ suc π)) β 2o) |
48 | 30, 35, 37, 47 | fvmptd 5597 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β ((πβπ₯)βsuc π) = if(suc π = β
, 1o, (π₯ββͺ suc π))) |
49 | | peano3 4595 |
. . . . . . . . . 10
β’ (π β Ο β suc π β β
) |
50 | 49 | adantl 277 |
. . . . . . . . 9
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β suc π β β
) |
51 | 50 | neneqd 2368 |
. . . . . . . 8
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β Β¬ suc π = β
) |
52 | 51 | iffalsed 3544 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β if(suc π = β
, 1o,
(π₯ββͺ suc π)) = (π₯ββͺ suc π)) |
53 | | nnord 4611 |
. . . . . . . . . . 11
β’ (π β Ο β Ord π) |
54 | | ordtr 4378 |
. . . . . . . . . . 11
β’ (Ord
π β Tr π) |
55 | 53, 54 | syl 14 |
. . . . . . . . . 10
β’ (π β Ο β Tr π) |
56 | | unisucg 4414 |
. . . . . . . . . 10
β’ (π β Ο β (Tr π β βͺ suc π = π)) |
57 | 55, 56 | mpbid 147 |
. . . . . . . . 9
β’ (π β Ο β βͺ suc π = π) |
58 | 57 | fveq2d 5519 |
. . . . . . . 8
β’ (π β Ο β (π₯ββͺ suc π) = (π₯βπ)) |
59 | 58 | adantl 277 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (π₯ββͺ suc π) = (π₯βπ)) |
60 | 48, 52, 59 | 3eqtrd 2214 |
. . . . . 6
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β ((πβπ₯)βsuc π) = (π₯βπ)) |
61 | | fveq1 5514 |
. . . . . . . . . . . 12
β’ (π = π¦ β (πββͺ π) = (π¦ββͺ π)) |
62 | 61 | ifeq2d 3552 |
. . . . . . . . . . 11
β’ (π = π¦ β if(π = β
, 1o, (πββͺ π))
= if(π = β
,
1o, (π¦ββͺ π))) |
63 | 62 | mpteq2dv 4094 |
. . . . . . . . . 10
β’ (π = π¦ β (π β Ο β¦ if(π = β
, 1o, (πββͺ π)))
= (π β Ο β¦
if(π = β
,
1o, (π¦ββͺ π)))) |
64 | 27 | mptex 5742 |
. . . . . . . . . 10
β’ (π β Ο β¦ if(π = β
, 1o,
(π¦ββͺ π)))
β V |
65 | 63, 1, 64 | fvmpt 5593 |
. . . . . . . . 9
β’ (π¦ β
ββ β (πβπ¦) = (π β Ο β¦ if(π = β
, 1o, (π¦ββͺ π)))) |
66 | 65 | ad3antlr 493 |
. . . . . . . 8
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (πβπ¦) = (π β Ο β¦ if(π = β
, 1o, (π¦ββͺ π)))) |
67 | 33 | fveq2d 5519 |
. . . . . . . . 9
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β (π¦ββͺ π) = (π¦ββͺ suc π)) |
68 | 32, 67 | ifbieq2d 3558 |
. . . . . . . 8
β’
(((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β§ π = suc π) β if(π = β
, 1o, (π¦ββͺ π))
= if(suc π = β
,
1o, (π¦ββͺ suc π))) |
69 | | nninff 7120 |
. . . . . . . . . . 11
β’ (π¦ β
ββ β π¦:ΟβΆ2o) |
70 | 69 | ad3antlr 493 |
. . . . . . . . . 10
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β π¦:ΟβΆ2o) |
71 | 70, 43 | ffvelcdmd 5652 |
. . . . . . . . 9
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (π¦ββͺ suc π) β
2o) |
72 | 39, 71, 46 | ifcldcd 3570 |
. . . . . . . 8
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β if(suc π = β
, 1o,
(π¦ββͺ suc π)) β 2o) |
73 | 66, 68, 37, 72 | fvmptd 5597 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β ((πβπ¦)βsuc π) = if(suc π = β
, 1o, (π¦ββͺ suc π))) |
74 | 51 | iffalsed 3544 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β if(suc π = β
, 1o,
(π¦ββͺ suc π)) = (π¦ββͺ suc π)) |
75 | 57 | fveq2d 5519 |
. . . . . . . 8
β’ (π β Ο β (π¦ββͺ suc π) = (π¦βπ)) |
76 | 75 | adantl 277 |
. . . . . . 7
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (π¦ββͺ suc π) = (π¦βπ)) |
77 | 73, 74, 76 | 3eqtrd 2214 |
. . . . . 6
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β ((πβπ¦)βsuc π) = (π¦βπ)) |
78 | 23, 60, 77 | 3eqtr3d 2218 |
. . . . 5
β’ ((((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β§ π β Ο) β (π₯βπ) = (π¦βπ)) |
79 | 12, 21, 78 | eqfnfvd 5616 |
. . . 4
β’ (((π₯ β
ββ β§ π¦ β ββ) β§
(πβπ₯) = (πβπ¦)) β π₯ = π¦) |
80 | 79 | ex 115 |
. . 3
β’ ((π₯ β
ββ β§ π¦ β ββ) β
((πβπ₯) = (πβπ¦) β π₯ = π¦)) |
81 | 80 | rgen2a 2531 |
. 2
β’
βπ₯ β
ββ βπ¦ β ββ ((πβπ₯) = (πβπ¦) β π₯ = π¦) |
82 | | dff13 5768 |
. 2
β’ (π:βββ1-1βββ β
(π:βββΆββ
β§ βπ₯ β
ββ βπ¦ β
ββ ((πβπ₯) = (πβπ¦)
β π₯ = π¦))) |
83 | 2, 81, 82 | mpbir2an 942 |
1
β’ π:βββ1-1βββ |