Step | Hyp | Ref
| Expression |
1 | | peano4nninf.s |
. . 3
⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦
(𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑝‘∪ 𝑖)))) |
2 | 1 | nnsf 13885 |
. 2
⊢ 𝑆:ℕ∞⟶ℕ∞ |
3 | | fveq1 5485 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑥 → (𝑓‘suc 𝑗) = (𝑥‘suc 𝑗)) |
4 | | fveq1 5485 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑥 → (𝑓‘𝑗) = (𝑥‘𝑗)) |
5 | 3, 4 | sseq12d 3173 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑥 → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ (𝑥‘suc 𝑗) ⊆ (𝑥‘𝑗))) |
6 | 5 | ralbidv 2466 |
. . . . . . . . 9
⊢ (𝑓 = 𝑥 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥‘𝑗))) |
7 | | df-nninf 7085 |
. . . . . . . . 9
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} |
8 | 6, 7 | elrab2 2885 |
. . . . . . . 8
⊢ (𝑥 ∈
ℕ∞ ↔ (𝑥 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥‘𝑗))) |
9 | 8 | simplbi 272 |
. . . . . . 7
⊢ (𝑥 ∈
ℕ∞ → 𝑥 ∈ (2o
↑𝑚 ω)) |
10 | | elmapfn 6637 |
. . . . . . 7
⊢ (𝑥 ∈ (2o
↑𝑚 ω) → 𝑥 Fn ω) |
11 | 9, 10 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈
ℕ∞ → 𝑥 Fn ω) |
12 | 11 | ad2antrr 480 |
. . . . 5
⊢ (((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) → 𝑥 Fn ω) |
13 | | fveq1 5485 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑦 → (𝑓‘suc 𝑗) = (𝑦‘suc 𝑗)) |
14 | | fveq1 5485 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑦 → (𝑓‘𝑗) = (𝑦‘𝑗)) |
15 | 13, 14 | sseq12d 3173 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑦 → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ (𝑦‘suc 𝑗) ⊆ (𝑦‘𝑗))) |
16 | 15 | ralbidv 2466 |
. . . . . . . . 9
⊢ (𝑓 = 𝑦 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦‘𝑗))) |
17 | 16, 7 | elrab2 2885 |
. . . . . . . 8
⊢ (𝑦 ∈
ℕ∞ ↔ (𝑦 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦‘𝑗))) |
18 | 17 | simplbi 272 |
. . . . . . 7
⊢ (𝑦 ∈
ℕ∞ → 𝑦 ∈ (2o
↑𝑚 ω)) |
19 | | elmapfn 6637 |
. . . . . . 7
⊢ (𝑦 ∈ (2o
↑𝑚 ω) → 𝑦 Fn ω) |
20 | 18, 19 | syl 14 |
. . . . . 6
⊢ (𝑦 ∈
ℕ∞ → 𝑦 Fn ω) |
21 | 20 | ad2antlr 481 |
. . . . 5
⊢ (((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) → 𝑦 Fn ω) |
22 | | simplr 520 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑆‘𝑥) = (𝑆‘𝑦)) |
23 | 22 | fveq1d 5488 |
. . . . . 6
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆‘𝑥)‘suc 𝑘) = ((𝑆‘𝑦)‘suc 𝑘)) |
24 | | fveq1 5485 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑥 → (𝑝‘∪ 𝑖) = (𝑥‘∪ 𝑖)) |
25 | 24 | ifeq2d 3538 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑥 → if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))
= if(𝑖 = ∅,
1o, (𝑥‘∪ 𝑖))) |
26 | 25 | mpteq2dv 4073 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑥 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))
= (𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑥‘∪ 𝑖)))) |
27 | | omex 4570 |
. . . . . . . . . . 11
⊢ ω
∈ V |
28 | 27 | mptex 5711 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o,
(𝑥‘∪ 𝑖)))
∈ V |
29 | 26, 1, 28 | fvmpt 5563 |
. . . . . . . . 9
⊢ (𝑥 ∈
ℕ∞ → (𝑆‘𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥‘∪ 𝑖)))) |
30 | 29 | ad3antrrr 484 |
. . . . . . . 8
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑆‘𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥‘∪ 𝑖)))) |
31 | | simpr 109 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘) |
32 | 31 | eqeq1d 2174 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑖 = ∅ ↔ suc 𝑘 = ∅)) |
33 | 31 | unieqd 3800 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → ∪ 𝑖 = ∪
suc 𝑘) |
34 | 33 | fveq2d 5490 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑥‘∪ 𝑖) = (𝑥‘∪ suc 𝑘)) |
35 | 32, 34 | ifbieq2d 3544 |
. . . . . . . 8
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑥‘∪ 𝑖))
= if(suc 𝑘 = ∅,
1o, (𝑥‘∪ suc 𝑘))) |
36 | | peano2 4572 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
37 | 36 | adantl 275 |
. . . . . . . 8
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈
ω) |
38 | | 1lt2o 6410 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
39 | 38 | a1i 9 |
. . . . . . . . 9
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → 1o ∈
2o) |
40 | | nninff 7087 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
ℕ∞ → 𝑥:ω⟶2o) |
41 | 40 | ad3antrrr 484 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → 𝑥:ω⟶2o) |
42 | | nnpredcl 4600 |
. . . . . . . . . . 11
⊢ (suc
𝑘 ∈ ω →
∪ suc 𝑘 ∈ ω) |
43 | 37, 42 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ∪ suc 𝑘 ∈ ω) |
44 | 41, 43 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑥‘∪ suc 𝑘) ∈
2o) |
45 | | nndceq0 4595 |
. . . . . . . . . 10
⊢ (suc
𝑘 ∈ ω →
DECID suc 𝑘
= ∅) |
46 | 37, 45 | syl 14 |
. . . . . . . . 9
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → DECID
suc 𝑘 =
∅) |
47 | 39, 44, 46 | ifcldcd 3555 |
. . . . . . . 8
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o,
(𝑥‘∪ suc 𝑘)) ∈ 2o) |
48 | 30, 35, 37, 47 | fvmptd 5567 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆‘𝑥)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑥‘∪ suc 𝑘))) |
49 | | peano3 4573 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → suc 𝑘 ≠ ∅) |
50 | 49 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ≠ ∅) |
51 | 50 | neneqd 2357 |
. . . . . . . 8
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ¬ suc 𝑘 = ∅) |
52 | 51 | iffalsed 3530 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o,
(𝑥‘∪ suc 𝑘)) = (𝑥‘∪ suc 𝑘)) |
53 | | nnord 4589 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ω → Ord 𝑘) |
54 | | ordtr 4356 |
. . . . . . . . . . 11
⊢ (Ord
𝑘 → Tr 𝑘) |
55 | 53, 54 | syl 14 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → Tr 𝑘) |
56 | | unisucg 4392 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ω → (Tr 𝑘 ↔ ∪ suc 𝑘 = 𝑘)) |
57 | 55, 56 | mpbid 146 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → ∪ suc 𝑘 = 𝑘) |
58 | 57 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → (𝑥‘∪ suc 𝑘) = (𝑥‘𝑘)) |
59 | 58 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑥‘∪ suc 𝑘) = (𝑥‘𝑘)) |
60 | 48, 52, 59 | 3eqtrd 2202 |
. . . . . 6
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆‘𝑥)‘suc 𝑘) = (𝑥‘𝑘)) |
61 | | fveq1 5485 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑦 → (𝑝‘∪ 𝑖) = (𝑦‘∪ 𝑖)) |
62 | 61 | ifeq2d 3538 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑦 → if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))
= if(𝑖 = ∅,
1o, (𝑦‘∪ 𝑖))) |
63 | 62 | mpteq2dv 4073 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))
= (𝑖 ∈ ω ↦
if(𝑖 = ∅,
1o, (𝑦‘∪ 𝑖)))) |
64 | 27 | mptex 5711 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o,
(𝑦‘∪ 𝑖)))
∈ V |
65 | 63, 1, 64 | fvmpt 5563 |
. . . . . . . . 9
⊢ (𝑦 ∈
ℕ∞ → (𝑆‘𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦‘∪ 𝑖)))) |
66 | 65 | ad3antlr 485 |
. . . . . . . 8
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑆‘𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦‘∪ 𝑖)))) |
67 | 33 | fveq2d 5490 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑦‘∪ 𝑖) = (𝑦‘∪ suc 𝑘)) |
68 | 32, 67 | ifbieq2d 3544 |
. . . . . . . 8
⊢
(((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑦‘∪ 𝑖))
= if(suc 𝑘 = ∅,
1o, (𝑦‘∪ suc 𝑘))) |
69 | | nninff 7087 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
ℕ∞ → 𝑦:ω⟶2o) |
70 | 69 | ad3antlr 485 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → 𝑦:ω⟶2o) |
71 | 70, 43 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑦‘∪ suc 𝑘) ∈
2o) |
72 | 39, 71, 46 | ifcldcd 3555 |
. . . . . . . 8
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o,
(𝑦‘∪ suc 𝑘)) ∈ 2o) |
73 | 66, 68, 37, 72 | fvmptd 5567 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆‘𝑦)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑦‘∪ suc 𝑘))) |
74 | 51 | iffalsed 3530 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o,
(𝑦‘∪ suc 𝑘)) = (𝑦‘∪ suc 𝑘)) |
75 | 57 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → (𝑦‘∪ suc 𝑘) = (𝑦‘𝑘)) |
76 | 75 | adantl 275 |
. . . . . . 7
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑦‘∪ suc 𝑘) = (𝑦‘𝑘)) |
77 | 73, 74, 76 | 3eqtrd 2202 |
. . . . . 6
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆‘𝑦)‘suc 𝑘) = (𝑦‘𝑘)) |
78 | 23, 60, 77 | 3eqtr3d 2206 |
. . . . 5
⊢ ((((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) ∧ 𝑘 ∈ ω) → (𝑥‘𝑘) = (𝑦‘𝑘)) |
79 | 12, 21, 78 | eqfnfvd 5586 |
. . . 4
⊢ (((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) ∧
(𝑆‘𝑥) = (𝑆‘𝑦)) → 𝑥 = 𝑦) |
80 | 79 | ex 114 |
. . 3
⊢ ((𝑥 ∈
ℕ∞ ∧ 𝑦 ∈ ℕ∞) →
((𝑆‘𝑥) = (𝑆‘𝑦) → 𝑥 = 𝑦)) |
81 | 80 | rgen2a 2520 |
. 2
⊢
∀𝑥 ∈
ℕ∞ ∀𝑦 ∈ ℕ∞ ((𝑆‘𝑥) = (𝑆‘𝑦) → 𝑥 = 𝑦) |
82 | | dff13 5736 |
. 2
⊢ (𝑆:ℕ∞–1-1→ℕ∞ ↔
(𝑆:ℕ∞⟶ℕ∞
∧ ∀𝑥 ∈
ℕ∞ ∀𝑦 ∈
ℕ∞ ((𝑆‘𝑥) = (𝑆‘𝑦)
→ 𝑥 = 𝑦))) |
83 | 2, 81, 82 | mpbir2an 932 |
1
⊢ 𝑆:ℕ∞–1-1→ℕ∞ |