Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano4nninf GIF version

Theorem peano4nninf 13189
Description: The successor function on is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
Hypothesis
Ref Expression
peano4nninf.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
peano4nninf 𝑆:ℕ1-1→ℕ
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem peano4nninf
Dummy variables 𝑘 𝑥 𝑦 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano4nninf.s . . 3 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
21nnsf 13188 . 2 𝑆:ℕ⟶ℕ
3 fveq1 5413 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓‘suc 𝑗) = (𝑥‘suc 𝑗))
4 fveq1 5413 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓𝑗) = (𝑥𝑗))
53, 4sseq12d 3123 . . . . . . . . . 10 (𝑓 = 𝑥 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
65ralbidv 2435 . . . . . . . . 9 (𝑓 = 𝑥 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
7 df-nninf 7000 . . . . . . . . 9 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
86, 7elrab2 2838 . . . . . . . 8 (𝑥 ∈ ℕ ↔ (𝑥 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
98simplbi 272 . . . . . . 7 (𝑥 ∈ ℕ𝑥 ∈ (2o𝑚 ω))
10 elmapfn 6558 . . . . . . 7 (𝑥 ∈ (2o𝑚 ω) → 𝑥 Fn ω)
119, 10syl 14 . . . . . 6 (𝑥 ∈ ℕ𝑥 Fn ω)
1211ad2antrr 479 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 Fn ω)
13 fveq1 5413 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓‘suc 𝑗) = (𝑦‘suc 𝑗))
14 fveq1 5413 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓𝑗) = (𝑦𝑗))
1513, 14sseq12d 3123 . . . . . . . . . 10 (𝑓 = 𝑦 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1615ralbidv 2435 . . . . . . . . 9 (𝑓 = 𝑦 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1716, 7elrab2 2838 . . . . . . . 8 (𝑦 ∈ ℕ ↔ (𝑦 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1817simplbi 272 . . . . . . 7 (𝑦 ∈ ℕ𝑦 ∈ (2o𝑚 ω))
19 elmapfn 6558 . . . . . . 7 (𝑦 ∈ (2o𝑚 ω) → 𝑦 Fn ω)
2018, 19syl 14 . . . . . 6 (𝑦 ∈ ℕ𝑦 Fn ω)
2120ad2antlr 480 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑦 Fn ω)
22 simplr 519 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑆𝑦))
2322fveq1d 5416 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = ((𝑆𝑦)‘suc 𝑘))
24 fveq1 5413 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝑝 𝑖) = (𝑥 𝑖))
2524ifeq2d 3485 . . . . . . . . . . 11 (𝑝 = 𝑥 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑥 𝑖)))
2625mpteq2dv 4014 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
27 omex 4502 . . . . . . . . . . 11 ω ∈ V
2827mptex 5639 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))) ∈ V
2926, 1, 28fvmpt 5491 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
3029ad3antrrr 483 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
31 simpr 109 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3231eqeq1d 2146 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑖 = ∅ ↔ suc 𝑘 = ∅))
3331unieqd 3742 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3433fveq2d 5418 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑥 𝑖) = (𝑥 suc 𝑘))
3532, 34ifbieq2d 3491 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑥 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
36 peano2 4504 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
3736adantl 275 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
38 1lt2o 6332 . . . . . . . . . 10 1o ∈ 2o
3938a1i 9 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 1o ∈ 2o)
40 nninff 13187 . . . . . . . . . . 11 (𝑥 ∈ ℕ𝑥:ω⟶2o)
4140ad3antrrr 483 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑥:ω⟶2o)
42 nnpredcl 4531 . . . . . . . . . . 11 (suc 𝑘 ∈ ω → suc 𝑘 ∈ ω)
4337, 42syl 14 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
4441, 43ffvelrnd 5549 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) ∈ 2o)
45 nndceq0 4526 . . . . . . . . . 10 (suc 𝑘 ∈ ω → DECID suc 𝑘 = ∅)
4637, 45syl 14 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → DECID suc 𝑘 = ∅)
4739, 44, 46ifcldcd 3502 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) ∈ 2o)
4830, 35, 37, 47fvmptd 5495 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
49 peano3 4505 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ≠ ∅)
5049adantl 275 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ≠ ∅)
5150neneqd 2327 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ¬ suc 𝑘 = ∅)
5251iffalsed 3479 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) = (𝑥 suc 𝑘))
53 nnord 4520 . . . . . . . . . . 11 (𝑘 ∈ ω → Ord 𝑘)
54 ordtr 4295 . . . . . . . . . . 11 (Ord 𝑘 → Tr 𝑘)
5553, 54syl 14 . . . . . . . . . 10 (𝑘 ∈ ω → Tr 𝑘)
56 unisucg 4331 . . . . . . . . . 10 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
5755, 56mpbid 146 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
5857fveq2d 5418 . . . . . . . 8 (𝑘 ∈ ω → (𝑥 suc 𝑘) = (𝑥𝑘))
5958adantl 275 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) = (𝑥𝑘))
6048, 52, 593eqtrd 2174 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = (𝑥𝑘))
61 fveq1 5413 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑝 𝑖) = (𝑦 𝑖))
6261ifeq2d 3485 . . . . . . . . . . 11 (𝑝 = 𝑦 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑦 𝑖)))
6362mpteq2dv 4014 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6427mptex 5639 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))) ∈ V
6563, 1, 64fvmpt 5491 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6665ad3antlr 484 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6733fveq2d 5418 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑦 𝑖) = (𝑦 suc 𝑘))
6832, 67ifbieq2d 3491 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑦 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
69 nninff 13187 . . . . . . . . . . 11 (𝑦 ∈ ℕ𝑦:ω⟶2o)
7069ad3antlr 484 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑦:ω⟶2o)
7170, 43ffvelrnd 5549 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) ∈ 2o)
7239, 71, 46ifcldcd 3502 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) ∈ 2o)
7366, 68, 37, 72fvmptd 5495 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
7451iffalsed 3479 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) = (𝑦 suc 𝑘))
7557fveq2d 5418 . . . . . . . 8 (𝑘 ∈ ω → (𝑦 suc 𝑘) = (𝑦𝑘))
7675adantl 275 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) = (𝑦𝑘))
7773, 74, 763eqtrd 2174 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = (𝑦𝑘))
7823, 60, 773eqtr3d 2178 . . . . 5 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥𝑘) = (𝑦𝑘))
7912, 21, 78eqfnfvd 5514 . . . 4 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 = 𝑦)
8079ex 114 . . 3 ((𝑥 ∈ ℕ𝑦 ∈ ℕ) → ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦))
8180rgen2a 2484 . 2 𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)
82 dff13 5662 . 2 (𝑆:ℕ1-1→ℕ ↔ (𝑆:ℕ⟶ℕ ∧ ∀𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)))
832, 81, 82mpbir2an 926 1 𝑆:ℕ1-1→ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 819   = wceq 1331  wcel 1480  wne 2306  wral 2414  wss 3066  c0 3358  ifcif 3469   cuni 3731  cmpt 3984  Tr wtr 4021  Ord word 4279  suc csuc 4282  ωcom 4499   Fn wfn 5113  wf 5114  1-1wf1 5115  cfv 5118  (class class class)co 5767  1oc1o 6299  2oc2o 6300  𝑚 cmap 6535  xnninf 6998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1o 6306  df-2o 6307  df-map 6537  df-nninf 7000
This theorem is referenced by:  exmidsbthrlem  13206
  Copyright terms: Public domain W3C validator