Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano4nninf GIF version

Theorem peano4nninf 14794
Description: The successor function on β„•βˆž is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
Hypothesis
Ref Expression
peano4nninf.s 𝑆 = (𝑝 ∈ β„•βˆž ↦ (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘β€˜βˆͺ 𝑖))))
Assertion
Ref Expression
peano4nninf 𝑆:β„•βˆžβ€“1-1β†’β„•βˆž
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem peano4nninf
Dummy variables π‘˜ π‘₯ 𝑦 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano4nninf.s . . 3 𝑆 = (𝑝 ∈ β„•βˆž ↦ (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘β€˜βˆͺ 𝑖))))
21nnsf 14793 . 2 𝑆:β„•βˆžβŸΆβ„•βˆž
3 fveq1 5516 . . . . . . . . . . 11 (𝑓 = π‘₯ β†’ (π‘“β€˜suc 𝑗) = (π‘₯β€˜suc 𝑗))
4 fveq1 5516 . . . . . . . . . . 11 (𝑓 = π‘₯ β†’ (π‘“β€˜π‘—) = (π‘₯β€˜π‘—))
53, 4sseq12d 3188 . . . . . . . . . 10 (𝑓 = π‘₯ β†’ ((π‘“β€˜suc 𝑗) βŠ† (π‘“β€˜π‘—) ↔ (π‘₯β€˜suc 𝑗) βŠ† (π‘₯β€˜π‘—)))
65ralbidv 2477 . . . . . . . . 9 (𝑓 = π‘₯ β†’ (βˆ€π‘— ∈ Ο‰ (π‘“β€˜suc 𝑗) βŠ† (π‘“β€˜π‘—) ↔ βˆ€π‘— ∈ Ο‰ (π‘₯β€˜suc 𝑗) βŠ† (π‘₯β€˜π‘—)))
7 df-nninf 7121 . . . . . . . . 9 β„•βˆž = {𝑓 ∈ (2o β†‘π‘š Ο‰) ∣ βˆ€π‘— ∈ Ο‰ (π‘“β€˜suc 𝑗) βŠ† (π‘“β€˜π‘—)}
86, 7elrab2 2898 . . . . . . . 8 (π‘₯ ∈ β„•βˆž ↔ (π‘₯ ∈ (2o β†‘π‘š Ο‰) ∧ βˆ€π‘— ∈ Ο‰ (π‘₯β€˜suc 𝑗) βŠ† (π‘₯β€˜π‘—)))
98simplbi 274 . . . . . . 7 (π‘₯ ∈ β„•βˆž β†’ π‘₯ ∈ (2o β†‘π‘š Ο‰))
10 elmapfn 6673 . . . . . . 7 (π‘₯ ∈ (2o β†‘π‘š Ο‰) β†’ π‘₯ Fn Ο‰)
119, 10syl 14 . . . . . 6 (π‘₯ ∈ β„•βˆž β†’ π‘₯ Fn Ο‰)
1211ad2antrr 488 . . . . 5 (((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) β†’ π‘₯ Fn Ο‰)
13 fveq1 5516 . . . . . . . . . . 11 (𝑓 = 𝑦 β†’ (π‘“β€˜suc 𝑗) = (π‘¦β€˜suc 𝑗))
14 fveq1 5516 . . . . . . . . . . 11 (𝑓 = 𝑦 β†’ (π‘“β€˜π‘—) = (π‘¦β€˜π‘—))
1513, 14sseq12d 3188 . . . . . . . . . 10 (𝑓 = 𝑦 β†’ ((π‘“β€˜suc 𝑗) βŠ† (π‘“β€˜π‘—) ↔ (π‘¦β€˜suc 𝑗) βŠ† (π‘¦β€˜π‘—)))
1615ralbidv 2477 . . . . . . . . 9 (𝑓 = 𝑦 β†’ (βˆ€π‘— ∈ Ο‰ (π‘“β€˜suc 𝑗) βŠ† (π‘“β€˜π‘—) ↔ βˆ€π‘— ∈ Ο‰ (π‘¦β€˜suc 𝑗) βŠ† (π‘¦β€˜π‘—)))
1716, 7elrab2 2898 . . . . . . . 8 (𝑦 ∈ β„•βˆž ↔ (𝑦 ∈ (2o β†‘π‘š Ο‰) ∧ βˆ€π‘— ∈ Ο‰ (π‘¦β€˜suc 𝑗) βŠ† (π‘¦β€˜π‘—)))
1817simplbi 274 . . . . . . 7 (𝑦 ∈ β„•βˆž β†’ 𝑦 ∈ (2o β†‘π‘š Ο‰))
19 elmapfn 6673 . . . . . . 7 (𝑦 ∈ (2o β†‘π‘š Ο‰) β†’ 𝑦 Fn Ο‰)
2018, 19syl 14 . . . . . 6 (𝑦 ∈ β„•βˆž β†’ 𝑦 Fn Ο‰)
2120ad2antlr 489 . . . . 5 (((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) β†’ 𝑦 Fn Ο‰)
22 simplr 528 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦))
2322fveq1d 5519 . . . . . 6 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ ((π‘†β€˜π‘₯)β€˜suc π‘˜) = ((π‘†β€˜π‘¦)β€˜suc π‘˜))
24 fveq1 5516 . . . . . . . . . . . 12 (𝑝 = π‘₯ β†’ (π‘β€˜βˆͺ 𝑖) = (π‘₯β€˜βˆͺ 𝑖))
2524ifeq2d 3554 . . . . . . . . . . 11 (𝑝 = π‘₯ β†’ if(𝑖 = βˆ…, 1o, (π‘β€˜βˆͺ 𝑖)) = if(𝑖 = βˆ…, 1o, (π‘₯β€˜βˆͺ 𝑖)))
2625mpteq2dv 4096 . . . . . . . . . 10 (𝑝 = π‘₯ β†’ (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘β€˜βˆͺ 𝑖))) = (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘₯β€˜βˆͺ 𝑖))))
27 omex 4594 . . . . . . . . . . 11 Ο‰ ∈ V
2827mptex 5744 . . . . . . . . . 10 (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘₯β€˜βˆͺ 𝑖))) ∈ V
2926, 1, 28fvmpt 5595 . . . . . . . . 9 (π‘₯ ∈ β„•βˆž β†’ (π‘†β€˜π‘₯) = (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘₯β€˜βˆͺ 𝑖))))
3029ad3antrrr 492 . . . . . . . 8 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘†β€˜π‘₯) = (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘₯β€˜βˆͺ 𝑖))))
31 simpr 110 . . . . . . . . . 10 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ 𝑖 = suc π‘˜)
3231eqeq1d 2186 . . . . . . . . 9 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ (𝑖 = βˆ… ↔ suc π‘˜ = βˆ…))
3331unieqd 3822 . . . . . . . . . 10 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ βˆͺ 𝑖 = βˆͺ suc π‘˜)
3433fveq2d 5521 . . . . . . . . 9 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ (π‘₯β€˜βˆͺ 𝑖) = (π‘₯β€˜βˆͺ suc π‘˜))
3532, 34ifbieq2d 3560 . . . . . . . 8 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ if(𝑖 = βˆ…, 1o, (π‘₯β€˜βˆͺ 𝑖)) = if(suc π‘˜ = βˆ…, 1o, (π‘₯β€˜βˆͺ suc π‘˜)))
36 peano2 4596 . . . . . . . . 9 (π‘˜ ∈ Ο‰ β†’ suc π‘˜ ∈ Ο‰)
3736adantl 277 . . . . . . . 8 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ suc π‘˜ ∈ Ο‰)
38 1lt2o 6445 . . . . . . . . . 10 1o ∈ 2o
3938a1i 9 . . . . . . . . 9 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ 1o ∈ 2o)
40 nninff 7123 . . . . . . . . . . 11 (π‘₯ ∈ β„•βˆž β†’ π‘₯:Ο‰βŸΆ2o)
4140ad3antrrr 492 . . . . . . . . . 10 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ π‘₯:Ο‰βŸΆ2o)
42 nnpredcl 4624 . . . . . . . . . . 11 (suc π‘˜ ∈ Ο‰ β†’ βˆͺ suc π‘˜ ∈ Ο‰)
4337, 42syl 14 . . . . . . . . . 10 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ βˆͺ suc π‘˜ ∈ Ο‰)
4441, 43ffvelcdmd 5654 . . . . . . . . 9 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘₯β€˜βˆͺ suc π‘˜) ∈ 2o)
45 nndceq0 4619 . . . . . . . . . 10 (suc π‘˜ ∈ Ο‰ β†’ DECID suc π‘˜ = βˆ…)
4637, 45syl 14 . . . . . . . . 9 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ DECID suc π‘˜ = βˆ…)
4739, 44, 46ifcldcd 3572 . . . . . . . 8 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ if(suc π‘˜ = βˆ…, 1o, (π‘₯β€˜βˆͺ suc π‘˜)) ∈ 2o)
4830, 35, 37, 47fvmptd 5599 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ ((π‘†β€˜π‘₯)β€˜suc π‘˜) = if(suc π‘˜ = βˆ…, 1o, (π‘₯β€˜βˆͺ suc π‘˜)))
49 peano3 4597 . . . . . . . . . 10 (π‘˜ ∈ Ο‰ β†’ suc π‘˜ β‰  βˆ…)
5049adantl 277 . . . . . . . . 9 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ suc π‘˜ β‰  βˆ…)
5150neneqd 2368 . . . . . . . 8 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ Β¬ suc π‘˜ = βˆ…)
5251iffalsed 3546 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ if(suc π‘˜ = βˆ…, 1o, (π‘₯β€˜βˆͺ suc π‘˜)) = (π‘₯β€˜βˆͺ suc π‘˜))
53 nnord 4613 . . . . . . . . . . 11 (π‘˜ ∈ Ο‰ β†’ Ord π‘˜)
54 ordtr 4380 . . . . . . . . . . 11 (Ord π‘˜ β†’ Tr π‘˜)
5553, 54syl 14 . . . . . . . . . 10 (π‘˜ ∈ Ο‰ β†’ Tr π‘˜)
56 unisucg 4416 . . . . . . . . . 10 (π‘˜ ∈ Ο‰ β†’ (Tr π‘˜ ↔ βˆͺ suc π‘˜ = π‘˜))
5755, 56mpbid 147 . . . . . . . . 9 (π‘˜ ∈ Ο‰ β†’ βˆͺ suc π‘˜ = π‘˜)
5857fveq2d 5521 . . . . . . . 8 (π‘˜ ∈ Ο‰ β†’ (π‘₯β€˜βˆͺ suc π‘˜) = (π‘₯β€˜π‘˜))
5958adantl 277 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘₯β€˜βˆͺ suc π‘˜) = (π‘₯β€˜π‘˜))
6048, 52, 593eqtrd 2214 . . . . . 6 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ ((π‘†β€˜π‘₯)β€˜suc π‘˜) = (π‘₯β€˜π‘˜))
61 fveq1 5516 . . . . . . . . . . . 12 (𝑝 = 𝑦 β†’ (π‘β€˜βˆͺ 𝑖) = (π‘¦β€˜βˆͺ 𝑖))
6261ifeq2d 3554 . . . . . . . . . . 11 (𝑝 = 𝑦 β†’ if(𝑖 = βˆ…, 1o, (π‘β€˜βˆͺ 𝑖)) = if(𝑖 = βˆ…, 1o, (π‘¦β€˜βˆͺ 𝑖)))
6362mpteq2dv 4096 . . . . . . . . . 10 (𝑝 = 𝑦 β†’ (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘β€˜βˆͺ 𝑖))) = (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘¦β€˜βˆͺ 𝑖))))
6427mptex 5744 . . . . . . . . . 10 (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘¦β€˜βˆͺ 𝑖))) ∈ V
6563, 1, 64fvmpt 5595 . . . . . . . . 9 (𝑦 ∈ β„•βˆž β†’ (π‘†β€˜π‘¦) = (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘¦β€˜βˆͺ 𝑖))))
6665ad3antlr 493 . . . . . . . 8 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘†β€˜π‘¦) = (𝑖 ∈ Ο‰ ↦ if(𝑖 = βˆ…, 1o, (π‘¦β€˜βˆͺ 𝑖))))
6733fveq2d 5521 . . . . . . . . 9 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ (π‘¦β€˜βˆͺ 𝑖) = (π‘¦β€˜βˆͺ suc π‘˜))
6832, 67ifbieq2d 3560 . . . . . . . 8 (((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) ∧ 𝑖 = suc π‘˜) β†’ if(𝑖 = βˆ…, 1o, (π‘¦β€˜βˆͺ 𝑖)) = if(suc π‘˜ = βˆ…, 1o, (π‘¦β€˜βˆͺ suc π‘˜)))
69 nninff 7123 . . . . . . . . . . 11 (𝑦 ∈ β„•βˆž β†’ 𝑦:Ο‰βŸΆ2o)
7069ad3antlr 493 . . . . . . . . . 10 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ 𝑦:Ο‰βŸΆ2o)
7170, 43ffvelcdmd 5654 . . . . . . . . 9 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘¦β€˜βˆͺ suc π‘˜) ∈ 2o)
7239, 71, 46ifcldcd 3572 . . . . . . . 8 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ if(suc π‘˜ = βˆ…, 1o, (π‘¦β€˜βˆͺ suc π‘˜)) ∈ 2o)
7366, 68, 37, 72fvmptd 5599 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ ((π‘†β€˜π‘¦)β€˜suc π‘˜) = if(suc π‘˜ = βˆ…, 1o, (π‘¦β€˜βˆͺ suc π‘˜)))
7451iffalsed 3546 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ if(suc π‘˜ = βˆ…, 1o, (π‘¦β€˜βˆͺ suc π‘˜)) = (π‘¦β€˜βˆͺ suc π‘˜))
7557fveq2d 5521 . . . . . . . 8 (π‘˜ ∈ Ο‰ β†’ (π‘¦β€˜βˆͺ suc π‘˜) = (π‘¦β€˜π‘˜))
7675adantl 277 . . . . . . 7 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘¦β€˜βˆͺ suc π‘˜) = (π‘¦β€˜π‘˜))
7773, 74, 763eqtrd 2214 . . . . . 6 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ ((π‘†β€˜π‘¦)β€˜suc π‘˜) = (π‘¦β€˜π‘˜))
7823, 60, 773eqtr3d 2218 . . . . 5 ((((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) ∧ π‘˜ ∈ Ο‰) β†’ (π‘₯β€˜π‘˜) = (π‘¦β€˜π‘˜))
7912, 21, 78eqfnfvd 5618 . . . 4 (((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) ∧ (π‘†β€˜π‘₯) = (π‘†β€˜π‘¦)) β†’ π‘₯ = 𝑦)
8079ex 115 . . 3 ((π‘₯ ∈ β„•βˆž ∧ 𝑦 ∈ β„•βˆž) β†’ ((π‘†β€˜π‘₯) = (π‘†β€˜π‘¦) β†’ π‘₯ = 𝑦))
8180rgen2a 2531 . 2 βˆ€π‘₯ ∈ β„•βˆž βˆ€π‘¦ ∈ β„•βˆž ((π‘†β€˜π‘₯) = (π‘†β€˜π‘¦) β†’ π‘₯ = 𝑦)
82 dff13 5771 . 2 (𝑆:β„•βˆžβ€“1-1β†’β„•βˆž ↔ (𝑆:β„•βˆžβŸΆβ„•βˆž ∧ βˆ€π‘₯ ∈ β„•βˆž βˆ€π‘¦ ∈ β„•βˆž ((π‘†β€˜π‘₯) = (π‘†β€˜π‘¦) β†’ π‘₯ = 𝑦)))
832, 81, 82mpbir2an 942 1 𝑆:β„•βˆžβ€“1-1β†’β„•βˆž
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104  DECID wdc 834   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  βˆ€wral 2455   βŠ† wss 3131  βˆ…c0 3424  ifcif 3536  βˆͺ cuni 3811   ↦ cmpt 4066  Tr wtr 4103  Ord word 4364  suc csuc 4367  Ο‰com 4591   Fn wfn 5213  βŸΆwf 5214  β€“1-1β†’wf1 5215  β€˜cfv 5218  (class class class)co 5877  1oc1o 6412  2oc2o 6413   β†‘π‘š cmap 6650  β„•βˆžxnninf 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-map 6652  df-nninf 7121
This theorem is referenced by:  exmidsbthrlem  14809
  Copyright terms: Public domain W3C validator