Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano4nninf GIF version

Theorem peano4nninf 13886
Description: The successor function on is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
Hypothesis
Ref Expression
peano4nninf.s 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
Assertion
Ref Expression
peano4nninf 𝑆:ℕ1-1→ℕ
Distinct variable groups:   𝑆,𝑖   𝑖,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem peano4nninf
Dummy variables 𝑘 𝑥 𝑦 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano4nninf.s . . 3 𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
21nnsf 13885 . 2 𝑆:ℕ⟶ℕ
3 fveq1 5485 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓‘suc 𝑗) = (𝑥‘suc 𝑗))
4 fveq1 5485 . . . . . . . . . . 11 (𝑓 = 𝑥 → (𝑓𝑗) = (𝑥𝑗))
53, 4sseq12d 3173 . . . . . . . . . 10 (𝑓 = 𝑥 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
65ralbidv 2466 . . . . . . . . 9 (𝑓 = 𝑥 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
7 df-nninf 7085 . . . . . . . . 9 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
86, 7elrab2 2885 . . . . . . . 8 (𝑥 ∈ ℕ ↔ (𝑥 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑥‘suc 𝑗) ⊆ (𝑥𝑗)))
98simplbi 272 . . . . . . 7 (𝑥 ∈ ℕ𝑥 ∈ (2o𝑚 ω))
10 elmapfn 6637 . . . . . . 7 (𝑥 ∈ (2o𝑚 ω) → 𝑥 Fn ω)
119, 10syl 14 . . . . . 6 (𝑥 ∈ ℕ𝑥 Fn ω)
1211ad2antrr 480 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 Fn ω)
13 fveq1 5485 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓‘suc 𝑗) = (𝑦‘suc 𝑗))
14 fveq1 5485 . . . . . . . . . . 11 (𝑓 = 𝑦 → (𝑓𝑗) = (𝑦𝑗))
1513, 14sseq12d 3173 . . . . . . . . . 10 (𝑓 = 𝑦 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1615ralbidv 2466 . . . . . . . . 9 (𝑓 = 𝑦 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1716, 7elrab2 2885 . . . . . . . 8 (𝑦 ∈ ℕ ↔ (𝑦 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑦‘suc 𝑗) ⊆ (𝑦𝑗)))
1817simplbi 272 . . . . . . 7 (𝑦 ∈ ℕ𝑦 ∈ (2o𝑚 ω))
19 elmapfn 6637 . . . . . . 7 (𝑦 ∈ (2o𝑚 ω) → 𝑦 Fn ω)
2018, 19syl 14 . . . . . 6 (𝑦 ∈ ℕ𝑦 Fn ω)
2120ad2antlr 481 . . . . 5 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑦 Fn ω)
22 simplr 520 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑆𝑦))
2322fveq1d 5488 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = ((𝑆𝑦)‘suc 𝑘))
24 fveq1 5485 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (𝑝 𝑖) = (𝑥 𝑖))
2524ifeq2d 3538 . . . . . . . . . . 11 (𝑝 = 𝑥 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑥 𝑖)))
2625mpteq2dv 4073 . . . . . . . . . 10 (𝑝 = 𝑥 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
27 omex 4570 . . . . . . . . . . 11 ω ∈ V
2827mptex 5711 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))) ∈ V
2926, 1, 28fvmpt 5563 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
3029ad3antrrr 484 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑥) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑥 𝑖))))
31 simpr 109 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3231eqeq1d 2174 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑖 = ∅ ↔ suc 𝑘 = ∅))
3331unieqd 3800 . . . . . . . . . 10 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → 𝑖 = suc 𝑘)
3433fveq2d 5490 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑥 𝑖) = (𝑥 suc 𝑘))
3532, 34ifbieq2d 3544 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑥 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
36 peano2 4572 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
3736adantl 275 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
38 1lt2o 6410 . . . . . . . . . 10 1o ∈ 2o
3938a1i 9 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 1o ∈ 2o)
40 nninff 7087 . . . . . . . . . . 11 (𝑥 ∈ ℕ𝑥:ω⟶2o)
4140ad3antrrr 484 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑥:ω⟶2o)
42 nnpredcl 4600 . . . . . . . . . . 11 (suc 𝑘 ∈ ω → suc 𝑘 ∈ ω)
4337, 42syl 14 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ ω)
4441, 43ffvelrnd 5621 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) ∈ 2o)
45 nndceq0 4595 . . . . . . . . . 10 (suc 𝑘 ∈ ω → DECID suc 𝑘 = ∅)
4637, 45syl 14 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → DECID suc 𝑘 = ∅)
4739, 44, 46ifcldcd 3555 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) ∈ 2o)
4830, 35, 37, 47fvmptd 5567 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)))
49 peano3 4573 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ≠ ∅)
5049adantl 275 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → suc 𝑘 ≠ ∅)
5150neneqd 2357 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ¬ suc 𝑘 = ∅)
5251iffalsed 3530 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑥 suc 𝑘)) = (𝑥 suc 𝑘))
53 nnord 4589 . . . . . . . . . . 11 (𝑘 ∈ ω → Ord 𝑘)
54 ordtr 4356 . . . . . . . . . . 11 (Ord 𝑘 → Tr 𝑘)
5553, 54syl 14 . . . . . . . . . 10 (𝑘 ∈ ω → Tr 𝑘)
56 unisucg 4392 . . . . . . . . . 10 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
5755, 56mpbid 146 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
5857fveq2d 5490 . . . . . . . 8 (𝑘 ∈ ω → (𝑥 suc 𝑘) = (𝑥𝑘))
5958adantl 275 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥 suc 𝑘) = (𝑥𝑘))
6048, 52, 593eqtrd 2202 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑥)‘suc 𝑘) = (𝑥𝑘))
61 fveq1 5485 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑝 𝑖) = (𝑦 𝑖))
6261ifeq2d 3538 . . . . . . . . . . 11 (𝑝 = 𝑦 → if(𝑖 = ∅, 1o, (𝑝 𝑖)) = if(𝑖 = ∅, 1o, (𝑦 𝑖)))
6362mpteq2dv 4073 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6427mptex 5711 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))) ∈ V
6563, 1, 64fvmpt 5563 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6665ad3antlr 485 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑆𝑦) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑦 𝑖))))
6733fveq2d 5490 . . . . . . . . 9 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → (𝑦 𝑖) = (𝑦 suc 𝑘))
6832, 67ifbieq2d 3544 . . . . . . . 8 (((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) ∧ 𝑖 = suc 𝑘) → if(𝑖 = ∅, 1o, (𝑦 𝑖)) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
69 nninff 7087 . . . . . . . . . . 11 (𝑦 ∈ ℕ𝑦:ω⟶2o)
7069ad3antlr 485 . . . . . . . . . 10 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → 𝑦:ω⟶2o)
7170, 43ffvelrnd 5621 . . . . . . . . 9 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) ∈ 2o)
7239, 71, 46ifcldcd 3555 . . . . . . . 8 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) ∈ 2o)
7366, 68, 37, 72fvmptd 5567 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)))
7451iffalsed 3530 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → if(suc 𝑘 = ∅, 1o, (𝑦 suc 𝑘)) = (𝑦 suc 𝑘))
7557fveq2d 5490 . . . . . . . 8 (𝑘 ∈ ω → (𝑦 suc 𝑘) = (𝑦𝑘))
7675adantl 275 . . . . . . 7 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑦 suc 𝑘) = (𝑦𝑘))
7773, 74, 763eqtrd 2202 . . . . . 6 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → ((𝑆𝑦)‘suc 𝑘) = (𝑦𝑘))
7823, 60, 773eqtr3d 2206 . . . . 5 ((((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) ∧ 𝑘 ∈ ω) → (𝑥𝑘) = (𝑦𝑘))
7912, 21, 78eqfnfvd 5586 . . . 4 (((𝑥 ∈ ℕ𝑦 ∈ ℕ) ∧ (𝑆𝑥) = (𝑆𝑦)) → 𝑥 = 𝑦)
8079ex 114 . . 3 ((𝑥 ∈ ℕ𝑦 ∈ ℕ) → ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦))
8180rgen2a 2520 . 2 𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)
82 dff13 5736 . 2 (𝑆:ℕ1-1→ℕ ↔ (𝑆:ℕ⟶ℕ ∧ ∀𝑥 ∈ ℕ𝑦 ∈ ℕ ((𝑆𝑥) = (𝑆𝑦) → 𝑥 = 𝑦)))
832, 81, 82mpbir2an 932 1 𝑆:ℕ1-1→ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336  wral 2444  wss 3116  c0 3409  ifcif 3520   cuni 3789  cmpt 4043  Tr wtr 4080  Ord word 4340  suc csuc 4343  ωcom 4567   Fn wfn 5183  wf 5184  1-1wf1 5185  cfv 5188  (class class class)co 5842  1oc1o 6377  2oc2o 6378  𝑚 cmap 6614  xnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator