Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf GIF version

Theorem 0nninf 14838
Description: The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf (ω × {∅}) ∈ ℕ

Proof of Theorem 0nninf
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6444 . . . 4 ∅ ∈ 2o
21fconst6 5417 . . 3 (ω × {∅}):ω⟶2o
3 2onn 6524 . . . . 5 2o ∈ ω
43elexi 2751 . . . 4 2o ∈ V
5 omex 4594 . . . 4 ω ∈ V
64, 5elmap 6679 . . 3 ((ω × {∅}) ∈ (2o𝑚 ω) ↔ (ω × {∅}):ω⟶2o)
72, 6mpbir 146 . 2 (ω × {∅}) ∈ (2o𝑚 ω)
8 peano2 4596 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 0ex 4132 . . . . . . 7 ∅ ∈ V
109fvconst2 5734 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
129fvconst2 5734 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅)
1311, 12eqtr4d 2213 . . . 4 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖))
14 eqimss 3211 . . . 4 (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1615rgen 2530 . 2 𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)
17 fveq1 5516 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖))
18 fveq1 5516 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓𝑖) = ((ω × {∅})‘𝑖))
1917, 18sseq12d 3188 . . . 4 (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
2019ralbidv 2477 . . 3 (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
21 df-nninf 7121 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2898 . 2 ((ω × {∅}) ∈ ℕ ↔ ((ω × {∅}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
237, 16, 22mpbir2an 942 1 (ω × {∅}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  wral 2455  wss 3131  c0 3424  {csn 3594  suc csuc 4367  ωcom 4591   × cxp 4626  wf 5214  cfv 5218  (class class class)co 5877  2oc2o 6413  𝑚 cmap 6650  xnninf 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1o 6419  df-2o 6420  df-map 6652  df-nninf 7121
This theorem is referenced by:  exmidsbthrlem  14855
  Copyright terms: Public domain W3C validator