![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > 0nninf | GIF version |
Description: The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) |
Ref | Expression |
---|---|
0nninf | ⊢ (ω × {∅}) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6460 | . . . 4 ⊢ ∅ ∈ 2o | |
2 | 1 | fconst6 5430 | . . 3 ⊢ (ω × {∅}):ω⟶2o |
3 | 2onn 6540 | . . . . 5 ⊢ 2o ∈ ω | |
4 | 3 | elexi 2764 | . . . 4 ⊢ 2o ∈ V |
5 | omex 4607 | . . . 4 ⊢ ω ∈ V | |
6 | 4, 5 | elmap 6695 | . . 3 ⊢ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ↔ (ω × {∅}):ω⟶2o) |
7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {∅}) ∈ (2o ↑𝑚 ω) |
8 | peano2 4609 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
9 | 0ex 4145 | . . . . . . 7 ⊢ ∅ ∈ V | |
10 | 9 | fvconst2 5748 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
12 | 9 | fvconst2 5748 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅) |
13 | 11, 12 | eqtr4d 2225 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖)) |
14 | eqimss 3224 | . . . 4 ⊢ (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) |
16 | 15 | rgen 2543 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖) |
17 | fveq1 5529 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖)) | |
18 | fveq1 5529 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘𝑖) = ((ω × {∅})‘𝑖)) | |
19 | 17, 18 | sseq12d 3201 | . . . 4 ⊢ (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
20 | 19 | ralbidv 2490 | . . 3 ⊢ (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
21 | df-nninf 7137 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
22 | 20, 21 | elrab2 2911 | . 2 ⊢ ((ω × {∅}) ∈ ℕ∞ ↔ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
23 | 7, 16, 22 | mpbir2an 944 | 1 ⊢ (ω × {∅}) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 ∀wral 2468 ⊆ wss 3144 ∅c0 3437 {csn 3607 suc csuc 4380 ωcom 4604 × cxp 4639 ⟶wf 5227 ‘cfv 5231 (class class class)co 5891 2oc2o 6429 ↑𝑚 cmap 6666 ℕ∞xnninf 7136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1o 6435 df-2o 6436 df-map 6668 df-nninf 7137 |
This theorem is referenced by: exmidsbthrlem 15155 |
Copyright terms: Public domain | W3C validator |