Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf GIF version

Theorem 0nninf 16400
Description: The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf (ω × {∅}) ∈ ℕ

Proof of Theorem 0nninf
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6595 . . . 4 ∅ ∈ 2o
21fconst6 5527 . . 3 (ω × {∅}):ω⟶2o
3 2onn 6675 . . . . 5 2o ∈ ω
43elexi 2812 . . . 4 2o ∈ V
5 omex 4685 . . . 4 ω ∈ V
64, 5elmap 6832 . . 3 ((ω × {∅}) ∈ (2o𝑚 ω) ↔ (ω × {∅}):ω⟶2o)
72, 6mpbir 146 . 2 (ω × {∅}) ∈ (2o𝑚 ω)
8 peano2 4687 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 0ex 4211 . . . . . . 7 ∅ ∈ V
109fvconst2 5859 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
129fvconst2 5859 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅)
1311, 12eqtr4d 2265 . . . 4 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖))
14 eqimss 3278 . . . 4 (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1615rgen 2583 . 2 𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)
17 fveq1 5628 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖))
18 fveq1 5628 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓𝑖) = ((ω × {∅})‘𝑖))
1917, 18sseq12d 3255 . . . 4 (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
2019ralbidv 2530 . . 3 (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
21 df-nninf 7295 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2962 . 2 ((ω × {∅}) ∈ ℕ ↔ ((ω × {∅}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
237, 16, 22mpbir2an 948 1 (ω × {∅}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  wral 2508  wss 3197  c0 3491  {csn 3666  suc csuc 4456  ωcom 4682   × cxp 4717  wf 5314  cfv 5318  (class class class)co 6007  2oc2o 6562  𝑚 cmap 6803  xnninf 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1o 6568  df-2o 6569  df-map 6805  df-nninf 7295
This theorem is referenced by:  exmidsbthrlem  16420
  Copyright terms: Public domain W3C validator