Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf GIF version

Theorem 0nninf 13997
Description: The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf (ω × {∅}) ∈ ℕ

Proof of Theorem 0nninf
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6417 . . . 4 ∅ ∈ 2o
21fconst6 5395 . . 3 (ω × {∅}):ω⟶2o
3 2onn 6497 . . . . 5 2o ∈ ω
43elexi 2742 . . . 4 2o ∈ V
5 omex 4575 . . . 4 ω ∈ V
64, 5elmap 6651 . . 3 ((ω × {∅}) ∈ (2o𝑚 ω) ↔ (ω × {∅}):ω⟶2o)
72, 6mpbir 145 . 2 (ω × {∅}) ∈ (2o𝑚 ω)
8 peano2 4577 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 0ex 4114 . . . . . . 7 ∅ ∈ V
109fvconst2 5709 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
129fvconst2 5709 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅)
1311, 12eqtr4d 2206 . . . 4 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖))
14 eqimss 3201 . . . 4 (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1615rgen 2523 . 2 𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)
17 fveq1 5493 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖))
18 fveq1 5493 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓𝑖) = ((ω × {∅})‘𝑖))
1917, 18sseq12d 3178 . . . 4 (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
2019ralbidv 2470 . . 3 (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
21 df-nninf 7093 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2889 . 2 ((ω × {∅}) ∈ ℕ ↔ ((ω × {∅}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
237, 16, 22mpbir2an 937 1 (ω × {∅}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  wral 2448  wss 3121  c0 3414  {csn 3581  suc csuc 4348  ωcom 4572   × cxp 4607  wf 5192  cfv 5196  (class class class)co 5850  2oc2o 6386  𝑚 cmap 6622  xnninf 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1o 6392  df-2o 6393  df-map 6624  df-nninf 7093
This theorem is referenced by:  exmidsbthrlem  14014
  Copyright terms: Public domain W3C validator