| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 0nninf | GIF version | ||
| Description: The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| 0nninf | ⊢ (ω × {∅}) ∈ ℕ∞ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0lt2o 6499 | . . . 4 ⊢ ∅ ∈ 2o | |
| 2 | 1 | fconst6 5457 | . . 3 ⊢ (ω × {∅}):ω⟶2o | 
| 3 | 2onn 6579 | . . . . 5 ⊢ 2o ∈ ω | |
| 4 | 3 | elexi 2775 | . . . 4 ⊢ 2o ∈ V | 
| 5 | omex 4629 | . . . 4 ⊢ ω ∈ V | |
| 6 | 4, 5 | elmap 6736 | . . 3 ⊢ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ↔ (ω × {∅}):ω⟶2o) | 
| 7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {∅}) ∈ (2o ↑𝑚 ω) | 
| 8 | peano2 4631 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
| 9 | 0ex 4160 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 10 | 9 | fvconst2 5778 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) | 
| 11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) | 
| 12 | 9 | fvconst2 5778 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅) | 
| 13 | 11, 12 | eqtr4d 2232 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖)) | 
| 14 | eqimss 3237 | . . . 4 ⊢ (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) | 
| 16 | 15 | rgen 2550 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖) | 
| 17 | fveq1 5557 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖)) | |
| 18 | fveq1 5557 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘𝑖) = ((ω × {∅})‘𝑖)) | |
| 19 | 17, 18 | sseq12d 3214 | . . . 4 ⊢ (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) | 
| 20 | 19 | ralbidv 2497 | . . 3 ⊢ (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) | 
| 21 | df-nninf 7186 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 22 | 20, 21 | elrab2 2923 | . 2 ⊢ ((ω × {∅}) ∈ ℕ∞ ↔ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) | 
| 23 | 7, 16, 22 | mpbir2an 944 | 1 ⊢ (ω × {∅}) ∈ ℕ∞ | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 {csn 3622 suc csuc 4400 ωcom 4626 × cxp 4661 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 2oc2o 6468 ↑𝑚 cmap 6707 ℕ∞xnninf 7185 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-nninf 7186 | 
| This theorem is referenced by: exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |