Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf GIF version

Theorem 0nninf 15648
Description: The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf (ω × {∅}) ∈ ℕ

Proof of Theorem 0nninf
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6499 . . . 4 ∅ ∈ 2o
21fconst6 5457 . . 3 (ω × {∅}):ω⟶2o
3 2onn 6579 . . . . 5 2o ∈ ω
43elexi 2775 . . . 4 2o ∈ V
5 omex 4629 . . . 4 ω ∈ V
64, 5elmap 6736 . . 3 ((ω × {∅}) ∈ (2o𝑚 ω) ↔ (ω × {∅}):ω⟶2o)
72, 6mpbir 146 . 2 (ω × {∅}) ∈ (2o𝑚 ω)
8 peano2 4631 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 0ex 4160 . . . . . . 7 ∅ ∈ V
109fvconst2 5778 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
129fvconst2 5778 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅)
1311, 12eqtr4d 2232 . . . 4 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖))
14 eqimss 3237 . . . 4 (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1615rgen 2550 . 2 𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)
17 fveq1 5557 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖))
18 fveq1 5557 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓𝑖) = ((ω × {∅})‘𝑖))
1917, 18sseq12d 3214 . . . 4 (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
2019ralbidv 2497 . . 3 (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
21 df-nninf 7186 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2923 . 2 ((ω × {∅}) ∈ ℕ ↔ ((ω × {∅}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
237, 16, 22mpbir2an 944 1 (ω × {∅}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  wral 2475  wss 3157  c0 3450  {csn 3622  suc csuc 4400  ωcom 4626   × cxp 4661  wf 5254  cfv 5258  (class class class)co 5922  2oc2o 6468  𝑚 cmap 6707  xnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator