Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  0nninf GIF version

Theorem 0nninf 15138
Description: The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
0nninf (ω × {∅}) ∈ ℕ

Proof of Theorem 0nninf
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6460 . . . 4 ∅ ∈ 2o
21fconst6 5430 . . 3 (ω × {∅}):ω⟶2o
3 2onn 6540 . . . . 5 2o ∈ ω
43elexi 2764 . . . 4 2o ∈ V
5 omex 4607 . . . 4 ω ∈ V
64, 5elmap 6695 . . 3 ((ω × {∅}) ∈ (2o𝑚 ω) ↔ (ω × {∅}):ω⟶2o)
72, 6mpbir 146 . 2 (ω × {∅}) ∈ (2o𝑚 ω)
8 peano2 4609 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
9 0ex 4145 . . . . . . 7 ∅ ∈ V
109fvconst2 5748 . . . . . 6 (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
118, 10syl 14 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅)
129fvconst2 5748 . . . . 5 (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅)
1311, 12eqtr4d 2225 . . . 4 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖))
14 eqimss 3224 . . . 4 (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1513, 14syl 14 . . 3 (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))
1615rgen 2543 . 2 𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)
17 fveq1 5529 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖))
18 fveq1 5529 . . . . 5 (𝑓 = (ω × {∅}) → (𝑓𝑖) = ((ω × {∅})‘𝑖))
1917, 18sseq12d 3201 . . . 4 (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
2019ralbidv 2490 . . 3 (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
21 df-nninf 7137 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
2220, 21elrab2 2911 . 2 ((ω × {∅}) ∈ ℕ ↔ ((ω × {∅}) ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)))
237, 16, 22mpbir2an 944 1 (ω × {∅}) ∈ ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  wral 2468  wss 3144  c0 3437  {csn 3607  suc csuc 4380  ωcom 4604   × cxp 4639  wf 5227  cfv 5231  (class class class)co 5891  2oc2o 6429  𝑚 cmap 6666  xnninf 7136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1o 6435  df-2o 6436  df-map 6668  df-nninf 7137
This theorem is referenced by:  exmidsbthrlem  15155
  Copyright terms: Public domain W3C validator