![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > 0nninf | GIF version |
Description: The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) |
Ref | Expression |
---|---|
0nninf | ⊢ (ω × {∅}) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6444 | . . . 4 ⊢ ∅ ∈ 2o | |
2 | 1 | fconst6 5417 | . . 3 ⊢ (ω × {∅}):ω⟶2o |
3 | 2onn 6524 | . . . . 5 ⊢ 2o ∈ ω | |
4 | 3 | elexi 2751 | . . . 4 ⊢ 2o ∈ V |
5 | omex 4594 | . . . 4 ⊢ ω ∈ V | |
6 | 4, 5 | elmap 6679 | . . 3 ⊢ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ↔ (ω × {∅}):ω⟶2o) |
7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {∅}) ∈ (2o ↑𝑚 ω) |
8 | peano2 4596 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
9 | 0ex 4132 | . . . . . . 7 ⊢ ∅ ∈ V | |
10 | 9 | fvconst2 5734 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
12 | 9 | fvconst2 5734 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅) |
13 | 11, 12 | eqtr4d 2213 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖)) |
14 | eqimss 3211 | . . . 4 ⊢ (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) |
16 | 15 | rgen 2530 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖) |
17 | fveq1 5516 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖)) | |
18 | fveq1 5516 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘𝑖) = ((ω × {∅})‘𝑖)) | |
19 | 17, 18 | sseq12d 3188 | . . . 4 ⊢ (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
20 | 19 | ralbidv 2477 | . . 3 ⊢ (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
21 | df-nninf 7121 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
22 | 20, 21 | elrab2 2898 | . 2 ⊢ ((ω × {∅}) ∈ ℕ∞ ↔ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
23 | 7, 16, 22 | mpbir2an 942 | 1 ⊢ (ω × {∅}) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 ∅c0 3424 {csn 3594 suc csuc 4367 ωcom 4591 × cxp 4626 ⟶wf 5214 ‘cfv 5218 (class class class)co 5877 2oc2o 6413 ↑𝑚 cmap 6650 ℕ∞xnninf 7120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1o 6419 df-2o 6420 df-map 6652 df-nninf 7121 |
This theorem is referenced by: exmidsbthrlem 14855 |
Copyright terms: Public domain | W3C validator |