| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 0nninf | GIF version | ||
| Description: The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) |
| Ref | Expression |
|---|---|
| 0nninf | ⊢ (ω × {∅}) ∈ ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt2o 6595 | . . . 4 ⊢ ∅ ∈ 2o | |
| 2 | 1 | fconst6 5527 | . . 3 ⊢ (ω × {∅}):ω⟶2o |
| 3 | 2onn 6675 | . . . . 5 ⊢ 2o ∈ ω | |
| 4 | 3 | elexi 2812 | . . . 4 ⊢ 2o ∈ V |
| 5 | omex 4685 | . . . 4 ⊢ ω ∈ V | |
| 6 | 4, 5 | elmap 6832 | . . 3 ⊢ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ↔ (ω × {∅}):ω⟶2o) |
| 7 | 2, 6 | mpbir 146 | . 2 ⊢ (ω × {∅}) ∈ (2o ↑𝑚 ω) |
| 8 | peano2 4687 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
| 9 | 0ex 4211 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 10 | 9 | fvconst2 5859 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
| 11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
| 12 | 9 | fvconst2 5859 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅) |
| 13 | 11, 12 | eqtr4d 2265 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖)) |
| 14 | eqimss 3278 | . . . 4 ⊢ (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) |
| 16 | 15 | rgen 2583 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖) |
| 17 | fveq1 5628 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖)) | |
| 18 | fveq1 5628 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘𝑖) = ((ω × {∅})‘𝑖)) | |
| 19 | 17, 18 | sseq12d 3255 | . . . 4 ⊢ (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
| 20 | 19 | ralbidv 2530 | . . 3 ⊢ (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
| 21 | df-nninf 7295 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 22 | 20, 21 | elrab2 2962 | . 2 ⊢ ((ω × {∅}) ∈ ℕ∞ ↔ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
| 23 | 7, 16, 22 | mpbir2an 948 | 1 ⊢ (ω × {∅}) ∈ ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 {csn 3666 suc csuc 4456 ωcom 4682 × cxp 4717 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 2oc2o 6562 ↑𝑚 cmap 6803 ℕ∞xnninf 7294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1o 6568 df-2o 6569 df-map 6805 df-nninf 7295 |
| This theorem is referenced by: exmidsbthrlem 16420 |
| Copyright terms: Public domain | W3C validator |