Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 0nninf | GIF version |
Description: The zero element of ℕ∞ (the constant sequence equal to ∅). (Contributed by Jim Kingdon, 14-Jul-2022.) |
Ref | Expression |
---|---|
0nninf | ⊢ (ω × {∅}) ∈ ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt2o 6417 | . . . 4 ⊢ ∅ ∈ 2o | |
2 | 1 | fconst6 5395 | . . 3 ⊢ (ω × {∅}):ω⟶2o |
3 | 2onn 6497 | . . . . 5 ⊢ 2o ∈ ω | |
4 | 3 | elexi 2742 | . . . 4 ⊢ 2o ∈ V |
5 | omex 4575 | . . . 4 ⊢ ω ∈ V | |
6 | 4, 5 | elmap 6651 | . . 3 ⊢ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ↔ (ω × {∅}):ω⟶2o) |
7 | 2, 6 | mpbir 145 | . 2 ⊢ (ω × {∅}) ∈ (2o ↑𝑚 ω) |
8 | peano2 4577 | . . . . . 6 ⊢ (𝑖 ∈ ω → suc 𝑖 ∈ ω) | |
9 | 0ex 4114 | . . . . . . 7 ⊢ ∅ ∈ V | |
10 | 9 | fvconst2 5709 | . . . . . 6 ⊢ (suc 𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
11 | 8, 10 | syl 14 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ∅) |
12 | 9 | fvconst2 5709 | . . . . 5 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘𝑖) = ∅) |
13 | 11, 12 | eqtr4d 2206 | . . . 4 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖)) |
14 | eqimss 3201 | . . . 4 ⊢ (((ω × {∅})‘suc 𝑖) = ((ω × {∅})‘𝑖) → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝑖 ∈ ω → ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖)) |
16 | 15 | rgen 2523 | . 2 ⊢ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖) |
17 | fveq1 5493 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘suc 𝑖) = ((ω × {∅})‘suc 𝑖)) | |
18 | fveq1 5493 | . . . . 5 ⊢ (𝑓 = (ω × {∅}) → (𝑓‘𝑖) = ((ω × {∅})‘𝑖)) | |
19 | 17, 18 | sseq12d 3178 | . . . 4 ⊢ (𝑓 = (ω × {∅}) → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
20 | 19 | ralbidv 2470 | . . 3 ⊢ (𝑓 = (ω × {∅}) → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
21 | df-nninf 7093 | . . 3 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
22 | 20, 21 | elrab2 2889 | . 2 ⊢ ((ω × {∅}) ∈ ℕ∞ ↔ ((ω × {∅}) ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω ((ω × {∅})‘suc 𝑖) ⊆ ((ω × {∅})‘𝑖))) |
23 | 7, 16, 22 | mpbir2an 937 | 1 ⊢ (ω × {∅}) ∈ ℕ∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ∅c0 3414 {csn 3581 suc csuc 4348 ωcom 4572 × cxp 4607 ⟶wf 5192 ‘cfv 5196 (class class class)co 5850 2oc2o 6386 ↑𝑚 cmap 6622 ℕ∞xnninf 7092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1o 6392 df-2o 6393 df-map 6624 df-nninf 7093 |
This theorem is referenced by: exmidsbthrlem 14014 |
Copyright terms: Public domain | W3C validator |