Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfalllem1 GIF version

Theorem nninfalllem1 15498
Description: Lemma for nninfall 15499. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q (𝜑𝑄 ∈ (2o𝑚))
nninfall.inf (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
nninfall.n (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
nninfalllem1.p (𝜑𝑃 ∈ ℕ)
nninfalllem1.n0 (𝜑 → (𝑄𝑃) = ∅)
Assertion
Ref Expression
nninfalllem1 (𝜑 → ∀𝑛 ∈ ω (𝑃𝑛) = 1o)
Distinct variable groups:   𝑃,𝑖   𝑄,𝑛   𝑖,𝑛,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑛)   𝑄(𝑥,𝑖)

Proof of Theorem nninfalllem1
Dummy variables 𝑓 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . . 6 (𝑢 = 𝑣 → (𝑃𝑢) = (𝑃𝑣))
21eqeq1d 2202 . . . . 5 (𝑢 = 𝑣 → ((𝑃𝑢) = 1o ↔ (𝑃𝑣) = 1o))
32imbi2d 230 . . . 4 (𝑢 = 𝑣 → ((𝜑 → (𝑃𝑢) = 1o) ↔ (𝜑 → (𝑃𝑣) = 1o)))
4 fveq2 5554 . . . . . 6 (𝑢 = 𝑛 → (𝑃𝑢) = (𝑃𝑛))
54eqeq1d 2202 . . . . 5 (𝑢 = 𝑛 → ((𝑃𝑢) = 1o ↔ (𝑃𝑛) = 1o))
65imbi2d 230 . . . 4 (𝑢 = 𝑛 → ((𝜑 → (𝑃𝑢) = 1o) ↔ (𝜑 → (𝑃𝑛) = 1o)))
7 1n0 6485 . . . . . . . 8 1o ≠ ∅
87nesymi 2410 . . . . . . 7 ¬ ∅ = 1o
9 nninfalllem1.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
109ad2antlr 489 . . . . . . . . . . 11 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → 𝑃 ∈ ℕ)
11 simplll 533 . . . . . . . . . . 11 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → 𝑢 ∈ ω)
12 simplr 528 . . . . . . . . . . . 12 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → 𝜑)
13 simpllr 534 . . . . . . . . . . . . 13 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o))
14 r19.21v 2571 . . . . . . . . . . . . 13 (∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o) ↔ (𝜑 → ∀𝑣𝑢 (𝑃𝑣) = 1o))
1513, 14sylib 122 . . . . . . . . . . . 12 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → (𝜑 → ∀𝑣𝑢 (𝑃𝑣) = 1o))
1612, 15mpd 13 . . . . . . . . . . 11 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → ∀𝑣𝑢 (𝑃𝑣) = 1o)
17 simpr 110 . . . . . . . . . . 11 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → (𝑃𝑢) = ∅)
1810, 11, 16, 17nnnninfeq 7187 . . . . . . . . . 10 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑢, 1o, ∅)))
1918fveq2d 5558 . . . . . . . . 9 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → (𝑄𝑃) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑢, 1o, ∅))))
20 nninfalllem1.n0 . . . . . . . . . 10 (𝜑 → (𝑄𝑃) = ∅)
2120ad2antlr 489 . . . . . . . . 9 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → (𝑄𝑃) = ∅)
22 elequ2 2169 . . . . . . . . . . . . . 14 (𝑛 = 𝑢 → (𝑖𝑛𝑖𝑢))
2322ifbid 3578 . . . . . . . . . . . . 13 (𝑛 = 𝑢 → if(𝑖𝑛, 1o, ∅) = if(𝑖𝑢, 1o, ∅))
2423mpteq2dv 4120 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑢, 1o, ∅)))
2524fveq2d 5558 . . . . . . . . . . 11 (𝑛 = 𝑢 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑢, 1o, ∅))))
2625eqeq1d 2202 . . . . . . . . . 10 (𝑛 = 𝑢 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑢, 1o, ∅))) = 1o))
27 nninfall.n . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
2827ad2antlr 489 . . . . . . . . . 10 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
2926, 28, 11rspcdva 2869 . . . . . . . . 9 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑢, 1o, ∅))) = 1o)
3019, 21, 293eqtr3d 2234 . . . . . . . 8 ((((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃𝑢) = ∅) → ∅ = 1o)
3130ex 115 . . . . . . 7 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → ((𝑃𝑢) = ∅ → ∅ = 1o))
328, 31mtoi 665 . . . . . 6 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → ¬ (𝑃𝑢) = ∅)
33 fveq1 5553 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗))
34 fveq1 5553 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑃 → (𝑓𝑗) = (𝑃𝑗))
3533, 34sseq12d 3210 . . . . . . . . . . . . . . 15 (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
3635ralbidv 2494 . . . . . . . . . . . . . 14 (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
37 df-nninf 7179 . . . . . . . . . . . . . 14 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
3836, 37elrab2 2919 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ ↔ (𝑃 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
399, 38sylib 122 . . . . . . . . . . . 12 (𝜑 → (𝑃 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
4039simpld 112 . . . . . . . . . . 11 (𝜑𝑃 ∈ (2o𝑚 ω))
41 elmapi 6724 . . . . . . . . . . 11 (𝑃 ∈ (2o𝑚 ω) → 𝑃:ω⟶2o)
4240, 41syl 14 . . . . . . . . . 10 (𝜑𝑃:ω⟶2o)
4342adantl 277 . . . . . . . . 9 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → 𝑃:ω⟶2o)
44 simpll 527 . . . . . . . . 9 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → 𝑢 ∈ ω)
4543, 44ffvelcdmd 5694 . . . . . . . 8 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → (𝑃𝑢) ∈ 2o)
46 elpri 3641 . . . . . . . . 9 ((𝑃𝑢) ∈ {∅, 1o} → ((𝑃𝑢) = ∅ ∨ (𝑃𝑢) = 1o))
47 df2o3 6483 . . . . . . . . 9 2o = {∅, 1o}
4846, 47eleq2s 2288 . . . . . . . 8 ((𝑃𝑢) ∈ 2o → ((𝑃𝑢) = ∅ ∨ (𝑃𝑢) = 1o))
4945, 48syl 14 . . . . . . 7 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → ((𝑃𝑢) = ∅ ∨ (𝑃𝑢) = 1o))
5049orcomd 730 . . . . . 6 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → ((𝑃𝑢) = 1o ∨ (𝑃𝑢) = ∅))
5132, 50ecased 1360 . . . . 5 (((𝑢 ∈ ω ∧ ∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o)) ∧ 𝜑) → (𝑃𝑢) = 1o)
5251exp31 364 . . . 4 (𝑢 ∈ ω → (∀𝑣𝑢 (𝜑 → (𝑃𝑣) = 1o) → (𝜑 → (𝑃𝑢) = 1o)))
533, 6, 52omsinds 4654 . . 3 (𝑛 ∈ ω → (𝜑 → (𝑃𝑛) = 1o))
5453impcom 125 . 2 ((𝜑𝑛 ∈ ω) → (𝑃𝑛) = 1o)
5554ralrimiva 2567 1 (𝜑 → ∀𝑛 ∈ ω (𝑃𝑛) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  wral 2472  wss 3153  c0 3446  ifcif 3557  {cpr 3619  cmpt 4090  suc csuc 4396  ωcom 4622  wf 5250  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  xnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179
This theorem is referenced by:  nninfall  15499
  Copyright terms: Public domain W3C validator