Step | Hyp | Ref
| Expression |
1 | | fveq2 5486 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (𝑃‘𝑢) = (𝑃‘𝑣)) |
2 | 1 | eqeq1d 2174 |
. . . . 5
⊢ (𝑢 = 𝑣 → ((𝑃‘𝑢) = 1o ↔ (𝑃‘𝑣) = 1o)) |
3 | 2 | imbi2d 229 |
. . . 4
⊢ (𝑢 = 𝑣 → ((𝜑 → (𝑃‘𝑢) = 1o) ↔ (𝜑 → (𝑃‘𝑣) = 1o))) |
4 | | fveq2 5486 |
. . . . . 6
⊢ (𝑢 = 𝑛 → (𝑃‘𝑢) = (𝑃‘𝑛)) |
5 | 4 | eqeq1d 2174 |
. . . . 5
⊢ (𝑢 = 𝑛 → ((𝑃‘𝑢) = 1o ↔ (𝑃‘𝑛) = 1o)) |
6 | 5 | imbi2d 229 |
. . . 4
⊢ (𝑢 = 𝑛 → ((𝜑 → (𝑃‘𝑢) = 1o) ↔ (𝜑 → (𝑃‘𝑛) = 1o))) |
7 | | 1n0 6400 |
. . . . . . . 8
⊢
1o ≠ ∅ |
8 | 7 | nesymi 2382 |
. . . . . . 7
⊢ ¬
∅ = 1o |
9 | | nninfalllem1.p |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈
ℕ∞) |
10 | 9 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → 𝑃 ∈
ℕ∞) |
11 | | simplll 523 |
. . . . . . . . . . 11
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → 𝑢 ∈ ω) |
12 | | simplr 520 |
. . . . . . . . . . . 12
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → 𝜑) |
13 | | simpllr 524 |
. . . . . . . . . . . . 13
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → ∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) |
14 | | r19.21v 2543 |
. . . . . . . . . . . . 13
⊢
(∀𝑣 ∈
𝑢 (𝜑 → (𝑃‘𝑣) = 1o) ↔ (𝜑 → ∀𝑣 ∈ 𝑢 (𝑃‘𝑣) = 1o)) |
15 | 13, 14 | sylib 121 |
. . . . . . . . . . . 12
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → (𝜑 → ∀𝑣 ∈ 𝑢 (𝑃‘𝑣) = 1o)) |
16 | 12, 15 | mpd 13 |
. . . . . . . . . . 11
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → ∀𝑣 ∈ 𝑢 (𝑃‘𝑣) = 1o) |
17 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → (𝑃‘𝑢) = ∅) |
18 | 10, 11, 16, 17 | nnnninfeq 7092 |
. . . . . . . . . 10
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑢, 1o, ∅))) |
19 | 18 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → (𝑄‘𝑃) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑢, 1o, ∅)))) |
20 | | nninfalllem1.n0 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑃) = ∅) |
21 | 20 | ad2antlr 481 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → (𝑄‘𝑃) = ∅) |
22 | | elequ2 2141 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑢 → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑢)) |
23 | 22 | ifbid 3541 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑢 → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑢, 1o, ∅)) |
24 | 23 | mpteq2dv 4073 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑢 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑢, 1o, ∅))) |
25 | 24 | fveq2d 5490 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑢 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑢, 1o, ∅)))) |
26 | 25 | eqeq1d 2174 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑢 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑢, 1o, ∅))) =
1o)) |
27 | | nninfall.n |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
28 | 27 | ad2antlr 481 |
. . . . . . . . . 10
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
29 | 26, 28, 11 | rspcdva 2835 |
. . . . . . . . 9
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑢, 1o, ∅))) =
1o) |
30 | 19, 21, 29 | 3eqtr3d 2206 |
. . . . . . . 8
⊢ ((((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) ∧ (𝑃‘𝑢) = ∅) → ∅ =
1o) |
31 | 30 | ex 114 |
. . . . . . 7
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → ((𝑃‘𝑢) = ∅ → ∅ =
1o)) |
32 | 8, 31 | mtoi 654 |
. . . . . 6
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → ¬ (𝑃‘𝑢) = ∅) |
33 | | fveq1 5485 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗)) |
34 | | fveq1 5485 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑃 → (𝑓‘𝑗) = (𝑃‘𝑗)) |
35 | 33, 34 | sseq12d 3173 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
36 | 35 | ralbidv 2466 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
37 | | df-nninf 7085 |
. . . . . . . . . . . . . 14
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} |
38 | 36, 37 | elrab2 2885 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
ℕ∞ ↔ (𝑃 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
39 | 9, 38 | sylib 121 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃‘𝑗))) |
40 | 39 | simpld 111 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ (2o
↑𝑚 ω)) |
41 | | elmapi 6636 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (2o
↑𝑚 ω) → 𝑃:ω⟶2o) |
42 | 40, 41 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃:ω⟶2o) |
43 | 42 | adantl 275 |
. . . . . . . . 9
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → 𝑃:ω⟶2o) |
44 | | simpll 519 |
. . . . . . . . 9
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → 𝑢 ∈ ω) |
45 | 43, 44 | ffvelrnd 5621 |
. . . . . . . 8
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → (𝑃‘𝑢) ∈ 2o) |
46 | | elpri 3599 |
. . . . . . . . 9
⊢ ((𝑃‘𝑢) ∈ {∅, 1o} →
((𝑃‘𝑢) = ∅ ∨ (𝑃‘𝑢) = 1o)) |
47 | | df2o3 6398 |
. . . . . . . . 9
⊢
2o = {∅, 1o} |
48 | 46, 47 | eleq2s 2261 |
. . . . . . . 8
⊢ ((𝑃‘𝑢) ∈ 2o → ((𝑃‘𝑢) = ∅ ∨ (𝑃‘𝑢) = 1o)) |
49 | 45, 48 | syl 14 |
. . . . . . 7
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → ((𝑃‘𝑢) = ∅ ∨ (𝑃‘𝑢) = 1o)) |
50 | 49 | orcomd 719 |
. . . . . 6
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → ((𝑃‘𝑢) = 1o ∨ (𝑃‘𝑢) = ∅)) |
51 | 32, 50 | ecased 1339 |
. . . . 5
⊢ (((𝑢 ∈ ω ∧
∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o)) ∧ 𝜑) → (𝑃‘𝑢) = 1o) |
52 | 51 | exp31 362 |
. . . 4
⊢ (𝑢 ∈ ω →
(∀𝑣 ∈ 𝑢 (𝜑 → (𝑃‘𝑣) = 1o) → (𝜑 → (𝑃‘𝑢) = 1o))) |
53 | 3, 6, 52 | omsinds 4599 |
. . 3
⊢ (𝑛 ∈ ω → (𝜑 → (𝑃‘𝑛) = 1o)) |
54 | 53 | impcom 124 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑃‘𝑛) = 1o) |
55 | 54 | ralrimiva 2539 |
1
⊢ (𝜑 → ∀𝑛 ∈ ω (𝑃‘𝑛) = 1o) |