ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemg GIF version

Theorem nninfwlpoimlemg 7277
Description: Lemma for nninfwlpoim 7281. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
Assertion
Ref Expression
nninfwlpoimlemg (𝜑𝐺 ∈ ℕ)
Distinct variable groups:   𝑖,𝐹   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥,𝑖)

Proof of Theorem nninfwlpoimlemg
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6527 . . . . . 6 ∅ ∈ 2o
21a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
3 1lt2o 6528 . . . . . 6 1o ∈ 2o
43a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
5 peano2 4643 . . . . . . . 8 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
65adantl 277 . . . . . . 7 ((𝜑𝑖 ∈ ω) → suc 𝑖 ∈ ω)
7 nnfi 6969 . . . . . . 7 (suc 𝑖 ∈ ω → suc 𝑖 ∈ Fin)
86, 7syl 14 . . . . . 6 ((𝜑𝑖 ∈ ω) → suc 𝑖 ∈ Fin)
9 2ssom 6610 . . . . . . . . 9 2o ⊆ ω
10 nninfwlpoimlemg.f . . . . . . . . . . 11 (𝜑𝐹:ω⟶2o)
1110ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝐹:ω⟶2o)
12 simpr 110 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝑥 ∈ suc 𝑖)
136adantr 276 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → suc 𝑖 ∈ ω)
14 elnn 4654 . . . . . . . . . . 11 ((𝑥 ∈ suc 𝑖 ∧ suc 𝑖 ∈ ω) → 𝑥 ∈ ω)
1512, 13, 14syl2anc 411 . . . . . . . . . 10 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝑥 ∈ ω)
1611, 15ffvelcdmd 5716 . . . . . . . . 9 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → (𝐹𝑥) ∈ 2o)
179, 16sselid 3191 . . . . . . . 8 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → (𝐹𝑥) ∈ ω)
18 peano1 4642 . . . . . . . . 9 ∅ ∈ ω
1918a1i 9 . . . . . . . 8 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → ∅ ∈ ω)
20 nndceq 6585 . . . . . . . 8 (((𝐹𝑥) ∈ ω ∧ ∅ ∈ ω) → DECID (𝐹𝑥) = ∅)
2117, 19, 20syl2anc 411 . . . . . . 7 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → DECID (𝐹𝑥) = ∅)
2221ralrimiva 2579 . . . . . 6 ((𝜑𝑖 ∈ ω) → ∀𝑥 ∈ suc 𝑖DECID (𝐹𝑥) = ∅)
23 finexdc 6999 . . . . . 6 ((suc 𝑖 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑖DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
248, 22, 23syl2anc 411 . . . . 5 ((𝜑𝑖 ∈ ω) → DECID𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
252, 4, 24ifcldcd 3608 . . . 4 ((𝜑𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
26 nninfwlpoimlemg.g . . . 4 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
2725, 26fmptd 5734 . . 3 (𝜑𝐺:ω⟶2o)
28 2onn 6607 . . . . 5 2o ∈ ω
2928elexi 2784 . . . 4 2o ∈ V
30 omex 4641 . . . 4 ω ∈ V
3129, 30elmap 6764 . . 3 (𝐺 ∈ (2o𝑚 ω) ↔ 𝐺:ω⟶2o)
3227, 31sylibr 134 . 2 (𝜑𝐺 ∈ (2o𝑚 ω))
33 simpr 110 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
3433iftrued 3578 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)) = ∅)
35 suceq 4449 . . . . . . . . . . . 12 (𝑖 = suc 𝑗 → suc 𝑖 = suc suc 𝑗)
3635rexeqdv 2709 . . . . . . . . . . 11 (𝑖 = suc 𝑗 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅))
3736ifbid 3592 . . . . . . . . . 10 (𝑖 = suc 𝑗 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
38 peano2 4643 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
3938adantl 277 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → suc 𝑗 ∈ ω)
401a1i 9 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω) → ∅ ∈ 2o)
413a1i 9 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω) → 1o ∈ 2o)
42 peano2 4643 . . . . . . . . . . . . . 14 (suc 𝑗 ∈ ω → suc suc 𝑗 ∈ ω)
4339, 42syl 14 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ω) → suc suc 𝑗 ∈ ω)
44 nnfi 6969 . . . . . . . . . . . . 13 (suc suc 𝑗 ∈ ω → suc suc 𝑗 ∈ Fin)
4543, 44syl 14 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ω) → suc suc 𝑗 ∈ Fin)
4610ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝐹:ω⟶2o)
47 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝑥 ∈ suc suc 𝑗)
4843adantr 276 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → suc suc 𝑗 ∈ ω)
49 elnn 4654 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ suc suc 𝑗 ∧ suc suc 𝑗 ∈ ω) → 𝑥 ∈ ω)
5047, 48, 49syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝑥 ∈ ω)
5146, 50ffvelcdmd 5716 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → (𝐹𝑥) ∈ 2o)
529, 51sselid 3191 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → (𝐹𝑥) ∈ ω)
5318a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → ∅ ∈ ω)
5452, 53, 20syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → DECID (𝐹𝑥) = ∅)
5554ralrimiva 2579 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ω) → ∀𝑥 ∈ suc suc 𝑗DECID (𝐹𝑥) = ∅)
56 finexdc 6999 . . . . . . . . . . . 12 ((suc suc 𝑗 ∈ Fin ∧ ∀𝑥 ∈ suc suc 𝑗DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅)
5745, 55, 56syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω) → DECID𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅)
5840, 41, 57ifcldcd 3608 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
5926, 37, 39, 58fvmptd3 5673 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
60 df-suc 4418 . . . . . . . . . . . 12 suc suc 𝑗 = (suc 𝑗 ∪ {suc 𝑗})
6160rexeqi 2707 . . . . . . . . . . 11 (∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝐹𝑥) = ∅)
62 rexun 3353 . . . . . . . . . . 11 (∃𝑥 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝐹𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅))
6361, 62bitri 184 . . . . . . . . . 10 (∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅))
64 ifbi 3591 . . . . . . . . . 10 ((∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅)) → if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o))
6563, 64ax-mp 5 . . . . . . . . 9 if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o)
6659, 65eqtrdi 2254 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o))
67 nnfi 6969 . . . . . . . . . . 11 (suc 𝑗 ∈ ω → suc 𝑗 ∈ Fin)
6839, 67syl 14 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → suc 𝑗 ∈ Fin)
6910ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝐹:ω⟶2o)
70 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝑥 ∈ suc 𝑗)
7139adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → suc 𝑗 ∈ ω)
72 elnn 4654 . . . . . . . . . . . . . . 15 ((𝑥 ∈ suc 𝑗 ∧ suc 𝑗 ∈ ω) → 𝑥 ∈ ω)
7370, 71, 72syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝑥 ∈ ω)
7469, 73ffvelcdmd 5716 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → (𝐹𝑥) ∈ 2o)
759, 74sselid 3191 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → (𝐹𝑥) ∈ ω)
7618a1i 9 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → ∅ ∈ ω)
7775, 76, 20syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → DECID (𝐹𝑥) = ∅)
7877ralrimiva 2579 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → ∀𝑥 ∈ suc 𝑗DECID (𝐹𝑥) = ∅)
79 finexdc 6999 . . . . . . . . . 10 ((suc 𝑗 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑗DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
8068, 78, 79syl2anc 411 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
81 ifordc 3611 . . . . . . . . 9 (DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ → if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
8280, 81syl 14 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
8366, 82eqtrd 2238 . . . . . . 7 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
8483adantr 276 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
85 suceq 4449 . . . . . . . . . . 11 (𝑖 = 𝑗 → suc 𝑖 = suc 𝑗)
8685rexeqdv 2709 . . . . . . . . . 10 (𝑖 = 𝑗 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅))
8786ifbid 3592 . . . . . . . . 9 (𝑖 = 𝑗 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
88 simpr 110 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
8940, 41, 80ifcldcd 3608 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
9026, 87, 88, 89fvmptd3 5673 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → (𝐺𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
9190adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
9233iftrued 3578 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = ∅)
9391, 92eqtrd 2238 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = ∅)
9434, 84, 933eqtr4d 2248 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) = (𝐺𝑗))
95 eqimss 3247 . . . . 5 ((𝐺‘suc 𝑗) = (𝐺𝑗) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
9694, 95syl 14 . . . 4 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
9759, 58eqeltrd 2282 . . . . . . 7 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) ∈ 2o)
98 el2oss1o 6529 . . . . . . 7 ((𝐺‘suc 𝑗) ∈ 2o → (𝐺‘suc 𝑗) ⊆ 1o)
9997, 98syl 14 . . . . . 6 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) ⊆ 1o)
10099adantr 276 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ 1o)
10190adantr 276 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
102 simpr 110 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
103102iffalsed 3581 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = 1o)
104101, 103eqtrd 2238 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = 1o)
105100, 104sseqtrrd 3232 . . . 4 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
106 exmiddc 838 . . . . 5 (DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ → (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅))
10780, 106syl 14 . . . 4 ((𝜑𝑗 ∈ ω) → (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅))
10896, 105, 107mpjaodan 800 . . 3 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
109108ralrimiva 2579 . 2 (𝜑 → ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
110 fveq1 5575 . . . . 5 (𝑓 = 𝐺 → (𝑓‘suc 𝑗) = (𝐺‘suc 𝑗))
111 fveq1 5575 . . . . 5 (𝑓 = 𝐺 → (𝑓𝑗) = (𝐺𝑗))
112110, 111sseq12d 3224 . . . 4 (𝑓 = 𝐺 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝐺‘suc 𝑗) ⊆ (𝐺𝑗)))
113112ralbidv 2506 . . 3 (𝑓 = 𝐺 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺𝑗)))
114 df-nninf 7222 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
115113, 114elrab2 2932 . 2 (𝐺 ∈ ℕ ↔ (𝐺 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺𝑗)))
11632, 109, 115sylanbrc 417 1 (𝜑𝐺 ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2176  wral 2484  wrex 2485  cun 3164  wss 3166  c0 3460  ifcif 3571  {csn 3633  cmpt 4105  suc csuc 4412  ωcom 4638  wf 5267  cfv 5271  (class class class)co 5944  1oc1o 6495  2oc2o 6496  𝑚 cmap 6735  Fincfn 6827  xnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-er 6620  df-map 6737  df-en 6828  df-fin 6830  df-nninf 7222
This theorem is referenced by:  nninfwlpoimlemdc  7279  nninfinfwlpolem  7280
  Copyright terms: Public domain W3C validator