ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoimlemg GIF version

Theorem nninfwlpoimlemg 7151
Description: Lemma for nninfwlpoim 7154. (Contributed by Jim Kingdon, 8-Dec-2024.)
Hypotheses
Ref Expression
nninfwlpoimlemg.f (𝜑𝐹:ω⟶2o)
nninfwlpoimlemg.g 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
Assertion
Ref Expression
nninfwlpoimlemg (𝜑𝐺 ∈ ℕ)
Distinct variable groups:   𝑖,𝐹   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥,𝑖)

Proof of Theorem nninfwlpoimlemg
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt2o 6420 . . . . . 6 ∅ ∈ 2o
21a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
3 1lt2o 6421 . . . . . 6 1o ∈ 2o
43a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
5 peano2 4579 . . . . . . . 8 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
65adantl 275 . . . . . . 7 ((𝜑𝑖 ∈ ω) → suc 𝑖 ∈ ω)
7 nnfi 6850 . . . . . . 7 (suc 𝑖 ∈ ω → suc 𝑖 ∈ Fin)
86, 7syl 14 . . . . . 6 ((𝜑𝑖 ∈ ω) → suc 𝑖 ∈ Fin)
9 2ssom 6503 . . . . . . . . 9 2o ⊆ ω
10 nninfwlpoimlemg.f . . . . . . . . . . 11 (𝜑𝐹:ω⟶2o)
1110ad2antrr 485 . . . . . . . . . 10 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝐹:ω⟶2o)
12 simpr 109 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝑥 ∈ suc 𝑖)
136adantr 274 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → suc 𝑖 ∈ ω)
14 elnn 4590 . . . . . . . . . . 11 ((𝑥 ∈ suc 𝑖 ∧ suc 𝑖 ∈ ω) → 𝑥 ∈ ω)
1512, 13, 14syl2anc 409 . . . . . . . . . 10 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝑥 ∈ ω)
1611, 15ffvelrnd 5632 . . . . . . . . 9 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → (𝐹𝑥) ∈ 2o)
179, 16sselid 3145 . . . . . . . 8 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → (𝐹𝑥) ∈ ω)
18 peano1 4578 . . . . . . . . 9 ∅ ∈ ω
1918a1i 9 . . . . . . . 8 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → ∅ ∈ ω)
20 nndceq 6478 . . . . . . . 8 (((𝐹𝑥) ∈ ω ∧ ∅ ∈ ω) → DECID (𝐹𝑥) = ∅)
2117, 19, 20syl2anc 409 . . . . . . 7 (((𝜑𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → DECID (𝐹𝑥) = ∅)
2221ralrimiva 2543 . . . . . 6 ((𝜑𝑖 ∈ ω) → ∀𝑥 ∈ suc 𝑖DECID (𝐹𝑥) = ∅)
23 finexdc 6880 . . . . . 6 ((suc 𝑖 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑖DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
248, 22, 23syl2anc 409 . . . . 5 ((𝜑𝑖 ∈ ω) → DECID𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅)
252, 4, 24ifcldcd 3561 . . . 4 ((𝜑𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
26 nninfwlpoimlemg.g . . . 4 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o))
2725, 26fmptd 5650 . . 3 (𝜑𝐺:ω⟶2o)
28 2onn 6500 . . . . 5 2o ∈ ω
2928elexi 2742 . . . 4 2o ∈ V
30 omex 4577 . . . 4 ω ∈ V
3129, 30elmap 6655 . . 3 (𝐺 ∈ (2o𝑚 ω) ↔ 𝐺:ω⟶2o)
3227, 31sylibr 133 . 2 (𝜑𝐺 ∈ (2o𝑚 ω))
33 simpr 109 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
3433iftrued 3533 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)) = ∅)
35 suceq 4387 . . . . . . . . . . . 12 (𝑖 = suc 𝑗 → suc 𝑖 = suc suc 𝑗)
3635rexeqdv 2672 . . . . . . . . . . 11 (𝑖 = suc 𝑗 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅))
3736ifbid 3547 . . . . . . . . . 10 (𝑖 = suc 𝑗 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
38 peano2 4579 . . . . . . . . . . 11 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
3938adantl 275 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → suc 𝑗 ∈ ω)
401a1i 9 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω) → ∅ ∈ 2o)
413a1i 9 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω) → 1o ∈ 2o)
42 peano2 4579 . . . . . . . . . . . . . 14 (suc 𝑗 ∈ ω → suc suc 𝑗 ∈ ω)
4339, 42syl 14 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ω) → suc suc 𝑗 ∈ ω)
44 nnfi 6850 . . . . . . . . . . . . 13 (suc suc 𝑗 ∈ ω → suc suc 𝑗 ∈ Fin)
4543, 44syl 14 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ω) → suc suc 𝑗 ∈ Fin)
4610ad2antrr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝐹:ω⟶2o)
47 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝑥 ∈ suc suc 𝑗)
4843adantr 274 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → suc suc 𝑗 ∈ ω)
49 elnn 4590 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ suc suc 𝑗 ∧ suc suc 𝑗 ∈ ω) → 𝑥 ∈ ω)
5047, 48, 49syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝑥 ∈ ω)
5146, 50ffvelrnd 5632 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → (𝐹𝑥) ∈ 2o)
529, 51sselid 3145 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → (𝐹𝑥) ∈ ω)
5318a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → ∅ ∈ ω)
5452, 53, 20syl2anc 409 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → DECID (𝐹𝑥) = ∅)
5554ralrimiva 2543 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ω) → ∀𝑥 ∈ suc suc 𝑗DECID (𝐹𝑥) = ∅)
56 finexdc 6880 . . . . . . . . . . . 12 ((suc suc 𝑗 ∈ Fin ∧ ∀𝑥 ∈ suc suc 𝑗DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅)
5745, 55, 56syl2anc 409 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω) → DECID𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅)
5840, 41, 57ifcldcd 3561 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
5926, 37, 39, 58fvmptd3 5589 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
60 df-suc 4356 . . . . . . . . . . . 12 suc suc 𝑗 = (suc 𝑗 ∪ {suc 𝑗})
6160rexeqi 2670 . . . . . . . . . . 11 (∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝐹𝑥) = ∅)
62 rexun 3307 . . . . . . . . . . 11 (∃𝑥 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝐹𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅))
6361, 62bitri 183 . . . . . . . . . 10 (∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅))
64 ifbi 3546 . . . . . . . . . 10 ((∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅)) → if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o))
6563, 64ax-mp 5 . . . . . . . . 9 if(∃𝑥 ∈ suc suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o)
6659, 65eqtrdi 2219 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o))
67 nnfi 6850 . . . . . . . . . . 11 (suc 𝑗 ∈ ω → suc 𝑗 ∈ Fin)
6839, 67syl 14 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → suc 𝑗 ∈ Fin)
6910ad2antrr 485 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝐹:ω⟶2o)
70 simpr 109 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝑥 ∈ suc 𝑗)
7139adantr 274 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → suc 𝑗 ∈ ω)
72 elnn 4590 . . . . . . . . . . . . . . 15 ((𝑥 ∈ suc 𝑗 ∧ suc 𝑗 ∈ ω) → 𝑥 ∈ ω)
7370, 71, 72syl2anc 409 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝑥 ∈ ω)
7469, 73ffvelrnd 5632 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → (𝐹𝑥) ∈ 2o)
759, 74sselid 3145 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → (𝐹𝑥) ∈ ω)
7618a1i 9 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → ∅ ∈ ω)
7775, 76, 20syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → DECID (𝐹𝑥) = ∅)
7877ralrimiva 2543 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω) → ∀𝑥 ∈ suc 𝑗DECID (𝐹𝑥) = ∅)
79 finexdc 6880 . . . . . . . . . 10 ((suc 𝑗 ∈ Fin ∧ ∀𝑥 ∈ suc 𝑗DECID (𝐹𝑥) = ∅) → DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
8068, 78, 79syl2anc 409 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
81 ifordc 3564 . . . . . . . . 9 (DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ → if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
8280, 81syl 14 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → if((∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅), ∅, 1o) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
8366, 82eqtrd 2203 . . . . . . 7 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
8483adantr 274 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹𝑥) = ∅, ∅, 1o)))
85 suceq 4387 . . . . . . . . . . 11 (𝑖 = 𝑗 → suc 𝑖 = suc 𝑗)
8685rexeqdv 2672 . . . . . . . . . 10 (𝑖 = 𝑗 → (∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅))
8786ifbid 3547 . . . . . . . . 9 (𝑖 = 𝑗 → if(∃𝑥 ∈ suc 𝑖(𝐹𝑥) = ∅, ∅, 1o) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
88 simpr 109 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
8940, 41, 80ifcldcd 3561 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) ∈ 2o)
9026, 87, 88, 89fvmptd3 5589 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → (𝐺𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
9190adantr 274 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
9233iftrued 3533 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = ∅)
9391, 92eqtrd 2203 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = ∅)
9434, 84, 933eqtr4d 2213 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) = (𝐺𝑗))
95 eqimss 3201 . . . . 5 ((𝐺‘suc 𝑗) = (𝐺𝑗) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
9694, 95syl 14 . . . 4 (((𝜑𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
9759, 58eqeltrd 2247 . . . . . . 7 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) ∈ 2o)
98 el2oss1o 6422 . . . . . . 7 ((𝐺‘suc 𝑗) ∈ 2o → (𝐺‘suc 𝑗) ⊆ 1o)
9997, 98syl 14 . . . . . 6 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) ⊆ 1o)
10099adantr 274 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ 1o)
10190adantr 274 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o))
102 simpr 109 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅)
103102iffalsed 3536 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅, ∅, 1o) = 1o)
104101, 103eqtrd 2203 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺𝑗) = 1o)
105100, 104sseqtrrd 3186 . . . 4 (((𝜑𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
106 exmiddc 831 . . . . 5 (DECID𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ → (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅))
10780, 106syl 14 . . . 4 ((𝜑𝑗 ∈ ω) → (∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅ ∨ ¬ ∃𝑥 ∈ suc 𝑗(𝐹𝑥) = ∅))
10896, 105, 107mpjaodan 793 . . 3 ((𝜑𝑗 ∈ ω) → (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
109108ralrimiva 2543 . 2 (𝜑 → ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺𝑗))
110 fveq1 5495 . . . . 5 (𝑓 = 𝐺 → (𝑓‘suc 𝑗) = (𝐺‘suc 𝑗))
111 fveq1 5495 . . . . 5 (𝑓 = 𝐺 → (𝑓𝑗) = (𝐺𝑗))
112110, 111sseq12d 3178 . . . 4 (𝑓 = 𝐺 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝐺‘suc 𝑗) ⊆ (𝐺𝑗)))
113112ralbidv 2470 . . 3 (𝑓 = 𝐺 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺𝑗)))
114 df-nninf 7097 . . 3 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
115113, 114elrab2 2889 . 2 (𝐺 ∈ ℕ ↔ (𝐺 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺𝑗)))
11632, 109, 115sylanbrc 415 1 (𝜑𝐺 ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449  cun 3119  wss 3121  c0 3414  ifcif 3526  {csn 3583  cmpt 4050  suc csuc 4350  ωcom 4574  wf 5194  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  Fincfn 6718  xnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-fin 6721  df-nninf 7097
This theorem is referenced by:  nninfwlpoimlemdc  7153
  Copyright terms: Public domain W3C validator