| Step | Hyp | Ref
| Expression |
| 1 | | 0lt2o 6508 |
. . . . . 6
⊢ ∅
∈ 2o |
| 2 | 1 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∅ ∈
2o) |
| 3 | | 1lt2o 6509 |
. . . . . 6
⊢
1o ∈ 2o |
| 4 | 3 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → 1o ∈
2o) |
| 5 | | peano2 4632 |
. . . . . . . 8
⊢ (𝑖 ∈ ω → suc 𝑖 ∈
ω) |
| 6 | 5 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → suc 𝑖 ∈
ω) |
| 7 | | nnfi 6942 |
. . . . . . 7
⊢ (suc
𝑖 ∈ ω → suc
𝑖 ∈
Fin) |
| 8 | 6, 7 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → suc 𝑖 ∈ Fin) |
| 9 | | 2ssom 6591 |
. . . . . . . . 9
⊢
2o ⊆ ω |
| 10 | | nninfwlpoimlemg.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ω⟶2o) |
| 11 | 10 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝐹:ω⟶2o) |
| 12 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝑥 ∈ suc 𝑖) |
| 13 | 6 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → suc 𝑖 ∈ ω) |
| 14 | | elnn 4643 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ suc 𝑖 ∧ suc 𝑖 ∈ ω) → 𝑥 ∈ ω) |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → 𝑥 ∈ ω) |
| 16 | 11, 15 | ffvelcdmd 5701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → (𝐹‘𝑥) ∈ 2o) |
| 17 | 9, 16 | sselid 3182 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → (𝐹‘𝑥) ∈ ω) |
| 18 | | peano1 4631 |
. . . . . . . . 9
⊢ ∅
∈ ω |
| 19 | 18 | a1i 9 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → ∅ ∈
ω) |
| 20 | | nndceq 6566 |
. . . . . . . 8
⊢ (((𝐹‘𝑥) ∈ ω ∧ ∅ ∈
ω) → DECID (𝐹‘𝑥) = ∅) |
| 21 | 17, 19, 20 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ω) ∧ 𝑥 ∈ suc 𝑖) → DECID (𝐹‘𝑥) = ∅) |
| 22 | 21 | ralrimiva 2570 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ∀𝑥 ∈ suc 𝑖DECID (𝐹‘𝑥) = ∅) |
| 23 | | finexdc 6972 |
. . . . . 6
⊢ ((suc
𝑖 ∈ Fin ∧
∀𝑥 ∈ suc 𝑖DECID (𝐹‘𝑥) = ∅) → DECID
∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅) |
| 24 | 8, 22, 23 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → DECID
∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅) |
| 25 | 2, 4, 24 | ifcldcd 3598 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) ∈
2o) |
| 26 | | nninfwlpoimlemg.g |
. . . 4
⊢ 𝐺 = (𝑖 ∈ ω ↦ if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 27 | 25, 26 | fmptd 5719 |
. . 3
⊢ (𝜑 → 𝐺:ω⟶2o) |
| 28 | | 2onn 6588 |
. . . . 5
⊢
2o ∈ ω |
| 29 | 28 | elexi 2775 |
. . . 4
⊢
2o ∈ V |
| 30 | | omex 4630 |
. . . 4
⊢ ω
∈ V |
| 31 | 29, 30 | elmap 6745 |
. . 3
⊢ (𝐺 ∈ (2o
↑𝑚 ω) ↔ 𝐺:ω⟶2o) |
| 32 | 27, 31 | sylibr 134 |
. 2
⊢ (𝜑 → 𝐺 ∈ (2o
↑𝑚 ω)) |
| 33 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) |
| 34 | 33 | iftrued 3569 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅, ∅, 1o)) =
∅) |
| 35 | | suceq 4438 |
. . . . . . . . . . . 12
⊢ (𝑖 = suc 𝑗 → suc 𝑖 = suc suc 𝑗) |
| 36 | 35 | rexeqdv 2700 |
. . . . . . . . . . 11
⊢ (𝑖 = suc 𝑗 → (∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ ↔ ∃𝑥 ∈ suc suc 𝑗(𝐹‘𝑥) = ∅)) |
| 37 | 36 | ifbid 3583 |
. . . . . . . . . 10
⊢ (𝑖 = suc 𝑗 → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) =
if(∃𝑥 ∈ suc suc
𝑗(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 38 | | peano2 4632 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) |
| 39 | 38 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → suc 𝑗 ∈
ω) |
| 40 | 1 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ∅ ∈
2o) |
| 41 | 3 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 1o ∈
2o) |
| 42 | | peano2 4632 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑗 ∈ ω → suc
suc 𝑗 ∈
ω) |
| 43 | 39, 42 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → suc suc 𝑗 ∈
ω) |
| 44 | | nnfi 6942 |
. . . . . . . . . . . . 13
⊢ (suc suc
𝑗 ∈ ω → suc
suc 𝑗 ∈
Fin) |
| 45 | 43, 44 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → suc suc 𝑗 ∈ Fin) |
| 46 | 10 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝐹:ω⟶2o) |
| 47 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝑥 ∈ suc suc 𝑗) |
| 48 | 43 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → suc suc 𝑗 ∈ ω) |
| 49 | | elnn 4643 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ suc suc 𝑗 ∧ suc suc 𝑗 ∈ ω) → 𝑥 ∈
ω) |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → 𝑥 ∈ ω) |
| 51 | 46, 50 | ffvelcdmd 5701 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → (𝐹‘𝑥) ∈ 2o) |
| 52 | 9, 51 | sselid 3182 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → (𝐹‘𝑥) ∈ ω) |
| 53 | 18 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → ∅ ∈
ω) |
| 54 | 52, 53, 20 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc suc 𝑗) → DECID (𝐹‘𝑥) = ∅) |
| 55 | 54 | ralrimiva 2570 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ∀𝑥 ∈ suc suc 𝑗DECID (𝐹‘𝑥) = ∅) |
| 56 | | finexdc 6972 |
. . . . . . . . . . . 12
⊢ ((suc suc
𝑗 ∈ Fin ∧
∀𝑥 ∈ suc suc
𝑗DECID
(𝐹‘𝑥) = ∅) → DECID
∃𝑥 ∈ suc suc
𝑗(𝐹‘𝑥) = ∅) |
| 57 | 45, 55, 56 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → DECID
∃𝑥 ∈ suc suc
𝑗(𝐹‘𝑥) = ∅) |
| 58 | 40, 41, 57 | ifcldcd 3598 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → if(∃𝑥 ∈ suc suc 𝑗(𝐹‘𝑥) = ∅, ∅, 1o) ∈
2o) |
| 59 | 26, 37, 39, 58 | fvmptd3 5658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc suc 𝑗(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 60 | | df-suc 4407 |
. . . . . . . . . . . 12
⊢ suc suc
𝑗 = (suc 𝑗 ∪ {suc 𝑗}) |
| 61 | 60 | rexeqi 2698 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈ suc
suc 𝑗(𝐹‘𝑥) = ∅ ↔ ∃𝑥 ∈ (suc 𝑗 ∪ {suc 𝑗})(𝐹‘𝑥) = ∅) |
| 62 | | rexun 3344 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
(suc 𝑗 ∪ {suc 𝑗})(𝐹‘𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅)) |
| 63 | 61, 62 | bitri 184 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈ suc
suc 𝑗(𝐹‘𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅)) |
| 64 | | ifbi 3582 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
suc suc 𝑗(𝐹‘𝑥) = ∅ ↔ (∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅)) → if(∃𝑥 ∈ suc suc 𝑗(𝐹‘𝑥) = ∅, ∅, 1o) =
if((∃𝑥 ∈ suc
𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅), ∅,
1o)) |
| 65 | 63, 64 | ax-mp 5 |
. . . . . . . . 9
⊢
if(∃𝑥 ∈
suc suc 𝑗(𝐹‘𝑥) = ∅, ∅, 1o) =
if((∃𝑥 ∈ suc
𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅), ∅,
1o) |
| 66 | 59, 65 | eqtrdi 2245 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if((∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅), ∅,
1o)) |
| 67 | | nnfi 6942 |
. . . . . . . . . . 11
⊢ (suc
𝑗 ∈ ω → suc
𝑗 ∈
Fin) |
| 68 | 39, 67 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → suc 𝑗 ∈ Fin) |
| 69 | 10 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝐹:ω⟶2o) |
| 70 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝑥 ∈ suc 𝑗) |
| 71 | 39 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → suc 𝑗 ∈ ω) |
| 72 | | elnn 4643 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ suc 𝑗 ∧ suc 𝑗 ∈ ω) → 𝑥 ∈ ω) |
| 73 | 70, 71, 72 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → 𝑥 ∈ ω) |
| 74 | 69, 73 | ffvelcdmd 5701 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → (𝐹‘𝑥) ∈ 2o) |
| 75 | 9, 74 | sselid 3182 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → (𝐹‘𝑥) ∈ ω) |
| 76 | 18 | a1i 9 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → ∅ ∈
ω) |
| 77 | 75, 76, 20 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ 𝑥 ∈ suc 𝑗) → DECID (𝐹‘𝑥) = ∅) |
| 78 | 77 | ralrimiva 2570 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → ∀𝑥 ∈ suc 𝑗DECID (𝐹‘𝑥) = ∅) |
| 79 | | finexdc 6972 |
. . . . . . . . . 10
⊢ ((suc
𝑗 ∈ Fin ∧
∀𝑥 ∈ suc 𝑗DECID (𝐹‘𝑥) = ∅) → DECID
∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) |
| 80 | 68, 78, 79 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → DECID
∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) |
| 81 | | ifordc 3601 |
. . . . . . . . 9
⊢
(DECID ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ → if((∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅), ∅, 1o) =
if(∃𝑥 ∈ suc
𝑗(𝐹‘𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅, ∅,
1o))) |
| 82 | 80, 81 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → if((∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅), ∅, 1o) =
if(∃𝑥 ∈ suc
𝑗(𝐹‘𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅, ∅,
1o))) |
| 83 | 66, 82 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅, ∅,
1o))) |
| 84 | 83 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘suc 𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅, if(∃𝑥 ∈ {suc 𝑗} (𝐹‘𝑥) = ∅, ∅,
1o))) |
| 85 | | suceq 4438 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → suc 𝑖 = suc 𝑗) |
| 86 | 85 | rexeqdv 2700 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅ ↔ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅)) |
| 87 | 86 | ifbid 3583 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → if(∃𝑥 ∈ suc 𝑖(𝐹‘𝑥) = ∅, ∅, 1o) =
if(∃𝑥 ∈ suc
𝑗(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 88 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω) |
| 89 | 40, 41, 80 | ifcldcd 3598 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅, 1o) ∈
2o) |
| 90 | 26, 87, 88, 89 | fvmptd3 5658 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 91 | 90 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 92 | 33 | iftrued 3569 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅, 1o) =
∅) |
| 93 | 91, 92 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘𝑗) = ∅) |
| 94 | 34, 84, 93 | 3eqtr4d 2239 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘suc 𝑗) = (𝐺‘𝑗)) |
| 95 | | eqimss 3238 |
. . . . 5
⊢ ((𝐺‘suc 𝑗) = (𝐺‘𝑗) → (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗)) |
| 96 | 94, 95 | syl 14 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗)) |
| 97 | 59, 58 | eqeltrd 2273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘suc 𝑗) ∈ 2o) |
| 98 | | el2oss1o 6510 |
. . . . . . 7
⊢ ((𝐺‘suc 𝑗) ∈ 2o → (𝐺‘suc 𝑗) ⊆ 1o) |
| 99 | 97, 98 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘suc 𝑗) ⊆ 1o) |
| 100 | 99 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ 1o) |
| 101 | 90 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘𝑗) = if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅,
1o)) |
| 102 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) |
| 103 | 102 | iffalsed 3572 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → if(∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅, ∅, 1o) =
1o) |
| 104 | 101, 103 | eqtrd 2229 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘𝑗) = 1o) |
| 105 | 100, 104 | sseqtrrd 3223 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ ω) ∧ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅) → (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗)) |
| 106 | | exmiddc 837 |
. . . . 5
⊢
(DECID ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ → (∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅)) |
| 107 | 80, 106 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅ ∨ ¬ ∃𝑥 ∈ suc 𝑗(𝐹‘𝑥) = ∅)) |
| 108 | 96, 105, 107 | mpjaodan 799 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ω) → (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗)) |
| 109 | 108 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗)) |
| 110 | | fveq1 5560 |
. . . . 5
⊢ (𝑓 = 𝐺 → (𝑓‘suc 𝑗) = (𝐺‘suc 𝑗)) |
| 111 | | fveq1 5560 |
. . . . 5
⊢ (𝑓 = 𝐺 → (𝑓‘𝑗) = (𝐺‘𝑗)) |
| 112 | 110, 111 | sseq12d 3215 |
. . . 4
⊢ (𝑓 = 𝐺 → ((𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗))) |
| 113 | 112 | ralbidv 2497 |
. . 3
⊢ (𝑓 = 𝐺 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗) ↔ ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗))) |
| 114 | | df-nninf 7195 |
. . 3
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓‘𝑗)} |
| 115 | 113, 114 | elrab2 2923 |
. 2
⊢ (𝐺 ∈
ℕ∞ ↔ (𝐺 ∈ (2o
↑𝑚 ω) ∧ ∀𝑗 ∈ ω (𝐺‘suc 𝑗) ⊆ (𝐺‘𝑗))) |
| 116 | 32, 109, 115 | sylanbrc 417 |
1
⊢ (𝜑 → 𝐺 ∈
ℕ∞) |