| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninff | GIF version | ||
| Description: An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninff | ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5575 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖)) | |
| 2 | fveq1 5575 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑖) = (𝐴‘𝑖)) | |
| 3 | 1, 2 | sseq12d 3224 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 4 | 3 | ralbidv 2506 | . . . 4 ⊢ (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 5 | df-nninf 7222 | . . . 4 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 6 | 4, 5 | elrab2 2932 | . . 3 ⊢ (𝐴 ∈ ℕ∞ ↔ (𝐴 ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 7 | 6 | simplbi 274 | . 2 ⊢ (𝐴 ∈ ℕ∞ → 𝐴 ∈ (2o ↑𝑚 ω)) |
| 8 | elmapi 6757 | . 2 ⊢ (𝐴 ∈ (2o ↑𝑚 ω) → 𝐴:ω⟶2o) | |
| 9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ⊆ wss 3166 suc csuc 4412 ωcom 4638 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 2oc2o 6496 ↑𝑚 cmap 6735 ℕ∞xnninf 7221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-map 6737 df-nninf 7222 |
| This theorem is referenced by: nnnninfeq 7230 nnnninfeq2 7231 nninfisol 7235 nninfdcinf 7273 nninfwlpor 7276 nninfctlemfo 12361 nnsf 15942 peano4nninf 15943 nninfall 15946 nninfsellemeqinf 15953 nnnninfex 15959 nninfnfiinf 15960 |
| Copyright terms: Public domain | W3C validator |