| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninff | GIF version | ||
| Description: An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninff | ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5598 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖)) | |
| 2 | fveq1 5598 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑖) = (𝐴‘𝑖)) | |
| 3 | 1, 2 | sseq12d 3232 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 4 | 3 | ralbidv 2508 | . . . 4 ⊢ (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 5 | df-nninf 7248 | . . . 4 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 6 | 4, 5 | elrab2 2939 | . . 3 ⊢ (𝐴 ∈ ℕ∞ ↔ (𝐴 ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 7 | 6 | simplbi 274 | . 2 ⊢ (𝐴 ∈ ℕ∞ → 𝐴 ∈ (2o ↑𝑚 ω)) |
| 8 | elmapi 6780 | . 2 ⊢ (𝐴 ∈ (2o ↑𝑚 ω) → 𝐴:ω⟶2o) | |
| 9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ⊆ wss 3174 suc csuc 4430 ωcom 4656 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 2oc2o 6519 ↑𝑚 cmap 6758 ℕ∞xnninf 7247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 df-nninf 7248 |
| This theorem is referenced by: nnnninfeq 7256 nnnninfeq2 7257 nninfisol 7261 nninfdcinf 7299 nninfwlpor 7302 nninfctlemfo 12476 nnsf 16144 peano4nninf 16145 nninfall 16148 nninfsellemeqinf 16155 nnnninfex 16161 nninfnfiinf 16162 |
| Copyright terms: Public domain | W3C validator |