Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninff GIF version

Theorem nninff 13125
Description: An element of is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
Assertion
Ref Expression
nninff (𝐴 ∈ ℕ𝐴:ω⟶2o)

Proof of Theorem nninff
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5388 . . . . . 6 (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖))
2 fveq1 5388 . . . . . 6 (𝑓 = 𝐴 → (𝑓𝑖) = (𝐴𝑖))
31, 2sseq12d 3098 . . . . 5 (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
43ralbidv 2414 . . . 4 (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
5 df-nninf 6975 . . . 4 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
64, 5elrab2 2816 . . 3 (𝐴 ∈ ℕ ↔ (𝐴 ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
76simplbi 272 . 2 (𝐴 ∈ ℕ𝐴 ∈ (2o𝑚 ω))
8 elmapi 6532 . 2 (𝐴 ∈ (2o𝑚 ω) → 𝐴:ω⟶2o)
97, 8syl 14 1 (𝐴 ∈ ℕ𝐴:ω⟶2o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1316  wcel 1465  wral 2393  wss 3041  suc csuc 4257  ωcom 4474  wf 5089  cfv 5093  (class class class)co 5742  2oc2o 6275  𝑚 cmap 6510  xnninf 6973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-map 6512  df-nninf 6975
This theorem is referenced by:  nnsf  13126  peano4nninf  13127  nninfalllemn  13129  nninfall  13131  nninfsellemeqinf  13139
  Copyright terms: Public domain W3C validator