ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninff GIF version

Theorem nninff 7285
Description: An element of is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
Assertion
Ref Expression
nninff (𝐴 ∈ ℕ𝐴:ω⟶2o)

Proof of Theorem nninff
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5625 . . . . . 6 (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖))
2 fveq1 5625 . . . . . 6 (𝑓 = 𝐴 → (𝑓𝑖) = (𝐴𝑖))
31, 2sseq12d 3255 . . . . 5 (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
43ralbidv 2530 . . . 4 (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
5 df-nninf 7283 . . . 4 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
64, 5elrab2 2962 . . 3 (𝐴 ∈ ℕ ↔ (𝐴 ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
76simplbi 274 . 2 (𝐴 ∈ ℕ𝐴 ∈ (2o𝑚 ω))
8 elmapi 6815 . 2 (𝐴 ∈ (2o𝑚 ω) → 𝐴:ω⟶2o)
97, 8syl 14 1 (𝐴 ∈ ℕ𝐴:ω⟶2o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  wss 3197  suc csuc 4455  ωcom 4681  wf 5313  cfv 5317  (class class class)co 6000  2oc2o 6554  𝑚 cmap 6793  xnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795  df-nninf 7283
This theorem is referenced by:  nnnninfeq  7291  nnnninfeq2  7292  nninfisol  7296  nninfdcinf  7334  nninfwlpor  7337  nninfctlemfo  12556  nnsf  16330  peano4nninf  16331  nninfall  16334  nninfsellemeqinf  16341  nnnninfex  16347  nninfnfiinf  16348
  Copyright terms: Public domain W3C validator