![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nninff | GIF version |
Description: An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
Ref | Expression |
---|---|
nninff | ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5304 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖)) | |
2 | fveq1 5304 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑖) = (𝐴‘𝑖)) | |
3 | 1, 2 | sseq12d 3055 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
4 | 3 | ralbidv 2380 | . . . 4 ⊢ (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
5 | df-nninf 6791 | . . . 4 ⊢ ℕ∞ = {𝑓 ∈ (2𝑜 ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
6 | 4, 5 | elrab2 2774 | . . 3 ⊢ (𝐴 ∈ ℕ∞ ↔ (𝐴 ∈ (2𝑜 ↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
7 | 6 | simplbi 268 | . 2 ⊢ (𝐴 ∈ ℕ∞ → 𝐴 ∈ (2𝑜 ↑𝑚 ω)) |
8 | elmapi 6427 | . 2 ⊢ (𝐴 ∈ (2𝑜 ↑𝑚 ω) → 𝐴:ω⟶2𝑜) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2𝑜) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ∀wral 2359 ⊆ wss 2999 suc csuc 4192 ωcom 4405 ⟶wf 5011 ‘cfv 5015 (class class class)co 5652 2𝑜c2o 6175 ↑𝑚 cmap 6405 ℕ∞xnninf 6789 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-map 6407 df-nninf 6791 |
This theorem is referenced by: nnsf 11895 peano4nninf 11896 nninfalllemn 11898 nninfall 11900 nninfsellemeqinf 11908 |
Copyright terms: Public domain | W3C validator |