Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninff GIF version

Theorem nninff 13373
Description: An element of is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
Assertion
Ref Expression
nninff (𝐴 ∈ ℕ𝐴:ω⟶2o)

Proof of Theorem nninff
Dummy variables 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5428 . . . . . 6 (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖))
2 fveq1 5428 . . . . . 6 (𝑓 = 𝐴 → (𝑓𝑖) = (𝐴𝑖))
31, 2sseq12d 3133 . . . . 5 (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
43ralbidv 2438 . . . 4 (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
5 df-nninf 7015 . . . 4 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
64, 5elrab2 2847 . . 3 (𝐴 ∈ ℕ ↔ (𝐴 ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
76simplbi 272 . 2 (𝐴 ∈ ℕ𝐴 ∈ (2o𝑚 ω))
8 elmapi 6572 . 2 (𝐴 ∈ (2o𝑚 ω) → 𝐴:ω⟶2o)
97, 8syl 14 1 (𝐴 ∈ ℕ𝐴:ω⟶2o)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  wral 2417  wss 3076  suc csuc 4295  ωcom 4512  wf 5127  cfv 5131  (class class class)co 5782  2oc2o 6315  𝑚 cmap 6550  xnninf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-map 6552  df-nninf 7015
This theorem is referenced by:  nnsf  13374  peano4nninf  13375  nninfalllemn  13377  nninfall  13379  nninfsellemeqinf  13387
  Copyright terms: Public domain W3C validator