| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninff | GIF version | ||
| Description: An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninff | ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5574 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖)) | |
| 2 | fveq1 5574 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑖) = (𝐴‘𝑖)) | |
| 3 | 1, 2 | sseq12d 3223 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 4 | 3 | ralbidv 2505 | . . . 4 ⊢ (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 5 | df-nninf 7221 | . . . 4 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
| 6 | 4, 5 | elrab2 2931 | . . 3 ⊢ (𝐴 ∈ ℕ∞ ↔ (𝐴 ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
| 7 | 6 | simplbi 274 | . 2 ⊢ (𝐴 ∈ ℕ∞ → 𝐴 ∈ (2o ↑𝑚 ω)) |
| 8 | elmapi 6756 | . 2 ⊢ (𝐴 ∈ (2o ↑𝑚 ω) → 𝐴:ω⟶2o) | |
| 9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 suc csuc 4411 ωcom 4637 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 2oc2o 6495 ↑𝑚 cmap 6734 ℕ∞xnninf 7220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 df-nninf 7221 |
| This theorem is referenced by: nnnninfeq 7229 nnnninfeq2 7230 nninfisol 7234 nninfdcinf 7272 nninfwlpor 7275 nninfctlemfo 12332 nnsf 15904 peano4nninf 15905 nninfall 15908 nninfsellemeqinf 15915 nnnninfex 15921 nninfnfiinf 15922 |
| Copyright terms: Public domain | W3C validator |