![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninff | GIF version |
Description: An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
Ref | Expression |
---|---|
nninff | ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5554 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖)) | |
2 | fveq1 5554 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑓‘𝑖) = (𝐴‘𝑖)) | |
3 | 1, 2 | sseq12d 3211 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
4 | 3 | ralbidv 2494 | . . . 4 ⊢ (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
5 | df-nninf 7181 | . . . 4 ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} | |
6 | 4, 5 | elrab2 2920 | . . 3 ⊢ (𝐴 ∈ ℕ∞ ↔ (𝐴 ∈ (2o ↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
7 | 6 | simplbi 274 | . 2 ⊢ (𝐴 ∈ ℕ∞ → 𝐴 ∈ (2o ↑𝑚 ω)) |
8 | elmapi 6726 | . 2 ⊢ (𝐴 ∈ (2o ↑𝑚 ω) → 𝐴:ω⟶2o) | |
9 | 7, 8 | syl 14 | 1 ⊢ (𝐴 ∈ ℕ∞ → 𝐴:ω⟶2o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 suc csuc 4397 ωcom 4623 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 2oc2o 6465 ↑𝑚 cmap 6704 ℕ∞xnninf 7180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-map 6706 df-nninf 7181 |
This theorem is referenced by: nnnninfeq 7189 nnnninfeq2 7190 nninfisol 7194 nninfdcinf 7232 nninfwlpor 7235 nninfctlemfo 12180 nnsf 15565 peano4nninf 15566 nninfall 15569 nninfsellemeqinf 15576 |
Copyright terms: Public domain | W3C validator |